

File Statistics 2.0a Requirements Specification

1. Scope

1.1 Overview
The File Statistics component collects statistical information for one or more files. Usually these
statistics are associated with the file content (number of lines, number of occurrences of a string,
etc.) as opposed to the file itself (file size, last modified time, etc.) although both types of statistics
could potentially be calculated by the component. The code that calculates a statistic is
pluggable so that many different types of statistics can be collected. Furthermore, a mechanism
exists that allows each statistic plug-in to specify what types of files it can or cannot handle. For
example, a plug-in that counts lines of code would be applicable to *.java files but not *.txt files.
After all files have been examined, a report is generated showing the results on a per-file, per-
directory and aggregate basis. The report generation code is also pluggable and a default
implementation is supplied. Finally, the component can optionally be run as a standalone
application from the command line.

1.2 Changes in 2.0a
The initial specification assumed that each file statistic would be numeric in nature. Version 2.0a
removes this restriction and allows the component to collect and report non-numeric data.
Example statistics that are not numeric include: most commonly occurring word or token (a
string), letter frequencies (a mapping of characters to numbers), number of occurrences for each
unique word (a mapping of strings to integers), etc. A consequence of this enhancement is that
directory results can no longer be computed by summing the results for its files. Instead, the
component should provide a method of aggregating custom statistic results. The reporting
portion of the component will need the ability to properly render these results. To use these new
features, add a processor plug-in that computes the most commonly occurring word.

1.3 Logic Requirements

1.3.1 Determine Files to be Examined
• The component accepts one or more file path strings that may contain wildcards. The

component is able to determine what files match these inputs. The paths can be absolute,
relative to the current working directory, or relative to a specified directory.

• The component can optionally use recursion to traverse through subdirectories.

1.3.2 Statistics Gathering
• For each file that is to be examined, determine its type either by its file extension or by

analyzing its contents.

• For each statistic plug-in that is applicable to this type of file, execute the plug-in against the
file to calculate its statistics.

• Three default statistic plug-in implementations are provided:

o A plain-text line counter that simply counts new lines (\n) in the document.

o A naïve C, C++, and Java style line counter that estimates number of statements by
counting opening braces and semicolons in the document, except when they appear
in a string or a comment.

o A token processor that finds the most commonly occurring word.

Confidential ©TopCoder Software, Inc. 2003 Page 1

1.3.3 Reporting

• After all files that match the filters have been processed, a report is generated showing the
results. This is done through a pluggable interface that allows different types of reports to be
generated.

• Each type of statistic is associated with a renderer that converts the statistic to an appropriate
format for the report.

• The sections presented in the generated report are configurable. The following types of
sections are available:

o File listing, showing the results for each individual file.

o Directory listing, showing the results for each directory.

o File Filter listing, showing the results for each file filter input.

o Overall results, showing the results for all scanned files.

• One default report generator implementation is provided:

o An XML report that is saved to a configurable file location.

1.4 Required Algorithms
No required algorithms.

1.5 Example of the Software Usage
The component can be used to determine the number of lines in a single file, a small project, or
an entire code base. The component can also be used to count only lines of test code, even
when they may be mixed in with the source files (by using file filters).

1.6 Future Component Direction
Future versions will likely include more plug-ins to gather more interesting data, such as number
of classes, number of methods, number of string occurrences, number of variable declarations,
etc. Future work may also include new report generators that create reports in CSV, HTML, or
some other format.

2. Interface Requirements

2.1.1 Graphical User Interface Requirements
No requirements.

2.1.2 External Interfaces
No external interfaces.

2.1.3 Environment Requirements
• Development language: C#

2.1.4 Namespace
TopCoder.File.Statistics

3. Software Requirements

3.1 Administration Requirements

3.1.1 What elements of the application need to be configurable?
• Sections included in the generated report.

Confidential ©TopCoder Software, Inc. 2003 Page 2

• Support for passing custom parameters to individual statistic plug-ins.

• All configuration settings are able to be set or overridden from the command-line, when run
as a standalone application. Therefore, the precedence is as follows, from highest to lowest:

o Command-line value

o Configuration manager value

o Hard-coded value

3.2 Technical Constraints

3.2.1 Are there particular frameworks or standards that are required?
No required frameworks.

3.2.2 TopCoder Software Component Dependencies:
• Configuration Manager: 2.0

• Magic Numbers: 1.0

• Command Line Utility: 1.0

3.2.3 Third Party Component, Library, or Product Dependencies:
.NET Framework 1.1

3.2.4 QA Environment:
• Windows 2000
• Windows Server 2003

3.3 Design Constraints
The component design and development solutions must adhere to the guidelines as outlined in
the TopCoder Software Component Guidelines. Modifications to these guidelines for this
component should be detailed below.

3.4 Required Documentation

3.4.1 Design Documentation
• Use-Case Diagram
• Class Diagram
• Sequence Diagram
• Component Specification
• Test Cases

3.4.2 Help / User Documentation
• Design documents must clearly define intended component usage in the ‘Documentation’ tab

of Poseidon.
• XML documentation must provide sufficient information regarding component design and

usage.

Confidential ©TopCoder Software, Inc. 2003 Page 3

	File Statistics 2.0a Requirements Specification
	Scope
	Overview
	Changes in 2.0a
	Logic Requirements
	Determine Files to be Examined
	Statistics Gathering
	Reporting

	Required Algorithms
	Example of the Software Usage
	Future Component Direction

	Interface Requirements
	Graphical User Interface Requirements
	External Interfaces
	Environment Requirements
	Namespace

	Software Requirements
	Administration Requirements
	What elements of the application need to be configurable?

	Technical Constraints
	Are there particular frameworks or standards that are requir
	TopCoder Software Component Dependencies:
	Third Party Component, Library, or Product Dependencies:
	QA Environment:

	Design Constraints
	Required Documentation
	Design Documentation
	Help / User Documentation

