
File Statistics 2.0a Component Specification
1. Design

File Statistics provides a framework to collect statistic data from a subset of the
file system and renders the format in configurable reporting style.

As a framework component the first question comes into mind when designing the
component would be what aspects of the component need to be pluggable. It’s
obvious that the algorithm to extract the statistical data as well as the way to render the
data should be typically configurable. A third aspect that is factored out is the filtering
logic to specify which subset of the files are processed by certain processor. Though this
could be tied to the processor the design would not as flexible that way. Once the three
aspects are cleared the strategy design patterns come into play.

Once we have the interfaces the next question would be how to glue them together.
The design finally chooses to use a non-sharable manager class because the use of the
component involves multiple steps and result is aggregated when each file is processed.
(The design does not prevent from using stateless reporting mechanism, like logging,
though.) The manager also fulfills the task to instantiate the framework from config files
for better configurability and for the use case of the command line interface. Each of the
pluggable implementation has contract constructor to configure itself.
Once the framework is settled the rest of the design is to produce plug-ins to fulfill the
requirements. The design should be relatively easy to understand.
Changes since version 2.0a
The version 2.0a requires the component to support non-numeric data. The following
paragraphs focus on detailing the changes in order to accommodate this requirement.

 Custom Data
In the first release all data are stored as long. An interface needs to be specified so that
non-numeric result can be held and used. This interface comes to be named Statistic. It
should define the minimum contract to ease implementation. Normally the data go
through three processes – generation, aggregation and render. The minimum operations
required are a clone(), an aggregate() as well as a render().
Now that Statistic is specified StatsResult should be changed to hold mapping to Statistic
instead of Long. However the original long version of the setStat() method is still
supported as a convenience, with the default implementation of LongStatistic.

 Custom Renderer
Letting the data render itself probably solves the problem with some very simple data (for
instance no matter how a long will probably always render itself as its numeric
representation) but this does not work for complex data. For example to render the most
commonly occurring tokens as plain text we would probably write:
Most commonly occurring tokens are apple, sky which occurred 17 times each.
However as XML it would probably be:
<token>apple</token><token>sky</token><occurrence>17</occurrence>
Using a consistent format does not make sense in such situations. This is where the
renderers come into the play. The most natural point to add this functionality would be
AbstractStatsReporting. The renderers are mapped to metrics which provide more
flexibility than mapped to the data type. As usually the renderers need to be configurable
so that this works with command line interface.
However the render() on Statistic is still supported. This chould be quite convenient for
simple data (a long probably always renders as the numeric representation). Renderers
work as an overridden behavior for the self-render.

 Common Token Analyzer

The upgrade will not be complete without a real processor that generates custom data.
This should be interpreted as both a demonstration and an implementation guide. Over
the examples provided by requirement the common token one is chosen because it
introduces another tricky point about the process.
Some custom data are not immediately aggregatable. If we only hold the tokens as well
as the occurrence we can not aggregate results from two files together, because we do
not know if a less occurring word in both files could become the most occurring one. This
means for some data we need to hold more data than necessary in order to accurately
aggregate.
This is not a problem itself, but since we can hold a lot of entries on a reporting structure.
There is one structure for each file, which actually do not need to aggregate at all. This
could cost a lot of memory. To avoid this we declare a release() method on the Statistic
interface to release unnecessary resources (and only keep those for rendering).

1.1 Design Patterns

 Strategy Pattern: used for FileMatcher, FileProcessor and StatsReporting and their
respective implementations. This is essential for a framework component in order to
provide maximum pluggability. Since version 2.0a Statistic and StatisticRenderer
interfaces are added which also implements the strategy pattern.

 Template Method Pattern: used for FileNameMatcher, FileCategoryMatcher and
FileTypeMatcher to minimize redundancy for extensions.

1.2 Industry Standards

None

1.3 Required Algorithms

1.3.1 Counting Lines in C Style Source Codes
For this release we will include a naive C style source line counter. It provides moderately
accurate figure with a relatively simple implementation. This does not necessarily work
for some cases.
The design recommends a state machine implementation. Here is the transition table.
State Input Action

slash(/) SLASH
comma(;) Increment line
open brace({) Increment line

START

other START
star(*) BLOCK_COMMENT
slash(/) LINE_COMMENT

SLASH

other START
slash(/) START
start(*) STAR

STAR

other BLOCK_COMMENT
SQ_BACKSLASH any SINGLE_QUOTE
DQ_BACKSLASH any DOUBLE_QUOTE

backslash(\) SQ_BACKSLASH
single quote(‘) START

SINGLE_QUOTE

other SINGLE_QUOTE
backslash(\) DQ_BACKSLASH DOUBLE_QUOTE
double quote(“) START

other DOUBLE_QUOTE
any LINE_COMMENT LINE_COMMENT
line feed START
star(*) STAR BLOCK_COMMENT
other BLOCK_COMMENT

1.3.2 Command Line Interface
The command line interface should be powerful to expose all the functionality and
flexibility to the user, which should still be easy to use (meaning most options should
have well defined defaults).
Here is what we have got:
[-c config-file] [-n namespace] [-b base-path] [-r] [-o output-file] path [path2 path3 ...]

 -c config-file
This specifies the configuration file to use. If the namespace is provided at the same time
it will be loaded to the namespace in order to instantiate the component. Otherwise it is
loaded to default namespace.

 -n namespace
This specifies the namespace to use. If the config file is provided at the same time the
config file is loaded to the namespace. Otherwise the namespace should be preloaded. If
neither config file nor namespace is provided the component instantiates from the default
namespace (assuming preload).

 -b base-path
This specifies the base directory for the reporting. If this is provided all path are supposed
to be relative to this path and relative paths are used for reporting. If not provided all path
are supposed to be either absolute to relative to executing path, with reporting based on
absolute path.

 -r
This specifies whether the directories are processed in recursive mode. If not provided
directories do not go into sub-directories. If no directory is processed this switch does not
make any effects.

 -o output-file
This specifies the output file which is either absolute or relative to executing path (does
not rely on base-path). If not provided reporting is printed to console.

 path [path2 path3 …]
This specifies a list of files or directories to process. If base directory is provided they are
relative, otherwise absolute to relative to executing path. Files and/or directories can mix.

1.3.3 Xml Reporting
In order to provide better human readability and easy stylesheet support, the output xml
uses dynamic element names for the stats result. The display name of the metric will be
used to render the element node (which consequently requires well-formed name to be
used but the framework does not validate over that). Refer to the sample output which
should be pretty clear in structure. For readability it is advised to use pretty formatting for
the output. When multiple filename, directory name or aliases are listed, alphabetical
order should be used (case-insensitive).
Since version 2.0a XML reporting needs to resort to custom renderers to render custom
data. This could be problem in formatting. We should assume the custom renderer
configured will return well formed XML segments which can be encapsulated in an
element named after the metric’s display name. There is no more pretty formatting
recommendation for this, but supporting pretty formatting is a plus.

1.4 Component Class Overview

1.4.1 Package com.topcoder.file.statistics

 FileStatistics: This is the main class of the user API. It provides the basic API,
which includes maintaining a list of file processors, a reporting handler and controls
the way to process the file. Files are processed one by one and the results are
aggregated into the reporting. If you want to start a new reporting you should either
explicitly set the reporting or get the old reporting to reset it. There are two ways to
process the file: process it with the first matching processor and process it with each
matching processor. Refer to ExtendedFileStatistics for advanced usage.

 ExtendedFileStatistics: This is the extended version of FileStatistics which
supports some advanced operations including directory processing and reporting
printing. The reason to separate this out is that we may not need to rely on the
directory traversing algorithm incorporated here (which is recursive).

 Main: The command line entry point of the File Statistics utility. It uses
ExtendedFileStatistics to fulfill the task. When argument is invalid help message
should be printed.

 FileProcessor (interface): FileProcessor defines the contract to process a file. One
file processor defines an algorithm to produce statistical result for a certain class of
files against certain metrics. (For instance count line numbers for a text file.) Multiple
FileProcessors are aggregated into FileStatistics, which can run in two modes
(process with first matching processor and process with each matching processor).
File processors are mapped with an alias. This alias is dynamically provided by the
user and the reporting can be grouped against this alias.

 FileMatcher (interface): FileMatcher defines the contract to match a certain file (in
order for an attaching FileProcessor to process the file).

 StatsReporting (interface): StatsReporting interface defines the contract to
aggregate and render the statistical report. Result is fed into this interface one by
one and the file report is then generated. There is a way to reset (clear) the current
aggregated results.

 StatsResult: StatsResult is container for multiple results, each of which are mapped
from a Metric to a Long. This class wraps some map operations as well as provides
a way to clone and aggregate results. Since version 2.0a this class adds a few
methods to support non-numeric Statistic data. The original
getStat(StatsResult):long is not supported any more. Instead a Statistic is returned.

 Metric: Metric represents a measurement of the stats result. A metric is identified by
its name. Metrics with the same name will be aggregated. This class overrides
equals() and hashCode() so that it can be used as map keys.

 Statistic (interface): This interface represents a single statistic that is generated by
the processor. A processor can generate more than one Staticstic but it's the basic
unit that is aggregatable. This interface is added since version 2.0a in order to
accommodate non-numerical statistic result. The data itself must handle the logic to
aggregate, clone and simple render. Complex rendering is handled by custom
StatisticsRenderer implementation.

 LongStatistic: This class is added in version 2.0a in order to support the original
long type statistic data. It is also included as a demonstration of a simple data, while
the one included in the Common Token processor is included as a demonstration of
a complex data.

1.4.2 Package com.topcoder.file.statistics.processor

 FileProcessorBase (abstract): A base implementation that can be used for
FileProcessors. It provides alias and matcher support, including loading them from
configuration file. It serves TextLineCounter and CStyleLineCounter as well as can
be generically used by future implementations.

1.4.3 Package com.topcoder.file.statistics.processor.linecounter
 TextLineCounter: TextLineCounter counts lines for text files. It supports a single

metric of "Line Count".

 CStyleLineCounter: CStyleLineCounter counts lines for C style source files. This
implementation can handle C, C++, C# or Java. It only takes braces and comma into
account so it would not be very accurate in most cases. Comments and string literals
can be handled. It supports a single metric of "Line Count".

 SimpleStateMachine: This is a private static inner class to CStyleLineCounter that
implements a state machine that can process the source code. Notice this is an
implementation recommendation. Developer can choose to improve from this start
point. Dropping this class is acceptable as long as the implementation of
CStyleLineCounter is stateless (and the clarity and/or efficiency aspects are
improved).

1.4.4 Package com.topcoder.file.statistics.processor.commontoken

 CommonTokenAnalyzer: The CommonTokenProcessor looks for the most
commonly occurring tokens in a text file. A token can be either defined with an
alphabet or with a list of separators. A token can not span over lines. Since the
constructor is a bit confusing otherwise, static factory methods should be used to
create instance of this processor.

 CommonTokenStatistic: CommonTokenStatistic is created as the custom data
generated by the CommonTokenAnalyzer. It also acts as the temporary structure in
the processor (to aggregate the tokens).

 CommonTokenPlainRenderer: This renderer renders the CommonTokenStatistic
as plain text.

 CommonTokenXmlRenderer: This renderer renders the CommonTokenStatistic as
XML.

1.4.5 Package com.topcoder.file.statistics.matcher

 AnyFileMatcher: AnyFileMatcher is a trivial implementation that matches any file.

 FileNameMatcher (abstract): FileNameMatcher is a template class that handles
filename oriented matching logic.

 ExtensionMatcher: FileNameMatcher concrete implementation that matches one or
more file extensions. The extensions are matched in a case-sensitive manner.

 RegexMatcher: FileNameMatcher concrete implementation that matches file names
with one or more regular expression.

 FileCategoryMatcher (abstract): FileCategoryMatcher is a template class that
handles file category (text/binary) oriented matching logic. The purpose to still create
subclasses for such minor functionality is about the convenience in configuration.

 TextFileMatcher: FileCategoryMatcher concrete implementation that matches text
files.

 BinaryFileMatcher: FileCategoryMatcher concrete implementation that matches
binary files.

 FileTypeMatcher (abstract): FileTypeMatcher is a template class that handles file
type oriented matching logic. File type is resolved by the Magic Numbers component.

 TypeNameMatcher: FileTypeMatcher concrete implementation that matches file
types with one or more type names (as configured in Magic Numbers).

 MimeMatcher: MimeMatcher concrete implementation that matches file types with
one or more mimes (as configured in Magic Numbers).

1.4.6 Package com.topcoder.file.statistics.reporting
 AbstractStatsReporting (abstract): This class provides a StatsReporting

implementation base. It aggregates results from each processor and classifies them
based on single file, directory or alias. It also provides overall stats. It defers the
actual rendering logic to concrete implementations (BasicStatsReporting and
XmlStatsReporting). During version 2.0 this class is changed to support custom
renderers to render the Statistic data. A mapping from metric to StatisticRenderer is
maintained and configurable through configuration manager.

 StatsCollection: StatsCollection is a generic container for mapping from String keys
to StatsResult instances. It is used in AbstractStatsReporting to hold file, directory
and alias classified mappings. The class provides basic manipulation methods for
the mapping.

 BasicStatsReporting: BasicStatsReporting is a reporting implementation that
renders user-friendly reports. Since version 2.0a the generateReport() method is
refactored but the API does not change.

 XmlStatsReporting: XmlStatsReporting is a reporting implementation that renders
XML reports. Refer to component specification for formatting of the XML. It is
capable of using a stylesheet to transform the XML into user- oriented format (HTML,
CSV, etc.) Since version 2.0a the generateReport() method is refactored but the API
does not change.

 StatisticRenderer (interface): This interface is added since version 2.0a to render
custom (complex) Statistic. Implementation only needs to implement a single
method. If implementation needs to be configured through configuration file it is
required to have a public no-arg constructor.

1.5 Component Exception Definitions

1.5.1 Custom Exceptions
 FileStatisticsException: Framework exception which provides the extension base

for all exceptions. It does not subclass Base Exception since JDK 1.3 is not
supported.

 ConfigurationException: Used to cover configuration related exceptions for all the
constructors with a namespace or with a property.

 FileMatchingException: Encapsulates errors from the FileMatcher interface to
indicate a dependency error. If the file operation fails IOException is used instead.

 FileProcessingException: Encapsulates errors from the FileProcessor interface to
indicate an implementation specific error. If the file operation fails IOException is
used instead.

 StatsReportingException: Encapsulates errors from the StatsReporting interface to
indicate an implementation specific error.

 StatsAggregationException: New exception added since version 2.0a to represent
the error in Statistic data aggregation. Because the data is now custom instead of a
simple Long we can not predict the behavior any more. Custom implementation of
the Statistic can throw this exception if the data can not be aggregatable (since the
type does not match, or the data is released).

 NoSuchRendererException: New exception added since version 2.0a to indicate a
Statistic can not render within the reporting class since the data does not render
itself and there is no renderer configured at the respective metric.

 StatsRenderingException: New exception added since version 2.0a when the
custom renderers reports the Statistic can not be rendered by it. This could either be
a type mismatch or some other error.

1.5.2 System Exceptions
 NullPointerException: Used wherever null argument is used while not acceptable.
 IllegalArgumentException: Used wherever empty String argument is used while

not acceptable. Normally an empty String is checked with trimmed result.
 IOException: Propagated from file operations.

1.6 Thread Safety

This component is not thread-safe. The current FileMatcher and FileProcessor
implementations are thread-safe, which the rest part of the components is not thread-safe.
Different thread should instantiate separate FileStatistics and StatsReporting to fulfill
concurrent tasks (but the FileMatcher and FileProcessor implementations can potentially
be shared). This will not cause problem with the command line interface because
everything is run in a single thread in a stand-alone JVM.

2. Environment Requirements

2.1 Environment

JDK 1.4 (in order to use regular expression)

2.2 TopCoder Software Components

 Configuration Manager 2.1.4: used to support component configuration.

 Magic Numbers 1.0: used to examine file types. Notice this component also has the
ability to distinguish text and binary files but unfortunately it is not exposed on API.

 Command Line Utility 1.0: used to process command line arguments.

2.3 Third Party Components

 Apache Xalan 2.6.0: used to apply XSLT against reporting XML.

3. Installation and Configuration

3.1 Package Name

com.topcoder.file.statistics
com.topcoder.file.statistics.processor
com.topcoder.file.statistics.processor.linecounter
com.topcoder.file.statistics.processor.commontoken
com.topcoder.file.statistics.matcher
com.topcoder.file.statistics.reporting

3.2 Configuration Parameters

Parameter Description Values

processors Multiple sub-properties each specify a
FileProcessor instance to be
aggregated in the FileStatistics.

Property container

required

reporting Specifying a StatsReporting instance to
be used with FileStatistics.

Property container

optional, XmlStatsReporting is
instantiated if not specified

matchall Flag to indicate whether file is
processed with each matching
processor or the first matching
processor.

“yes”/”true”/”on” is translated to
true, other values translated to
false.

optional, false if not specified

matcher Specifying a FileMatcher instance to be
used with the associating
FileProcessor.

Property container

optional, AnyFileMatcher is
instantiated if not specified

classname Used within containers to specify the
classname to instantiate.

Fully qualified class name.

required

alias Used in processor container to specify
the processor alias.

Non-empty name.

required

renderers Used in AbstractStatsReporting to hold
a list of StatisticRenders.

Property container

optional

metric Used in AbstractStatsReporting to
specify the metric name for the
associated renderer.

Non-empty name.

required

stylesheet Used in XmlStatsReporting to apply on
the raw XML generated.

Valid file path.

optional, no XSLT applied if not
specified.

extensions Used in ExtensionMatcher to specify
the file extensions to match.

Multi-valued. Empty is allowed.

required

patterns Used in RegexMatcher to specify the
regular expressions to match filenames.

Multi-valued. Valid regular
expression.

required

types Used in TypeNameMatcher to specify
the file type names to match (which are
configurable in Magic Numbers).

Multi-valued. Non-empty.

required

mimes Used in MimeMatcher to specify the file
mimes to match (which are configurable
in Magic Numbers).

Multi-valued. Non-empty.

required

alphabet Used in CommonTokenAnalyzer to
define the alphabet for the tokens.
Alphabet is the complement set to
separators.

Non-empty string, contains no
duplicates, carriage return or
new line.

Either alphabet or separator is
required.

separator Used in CommonTokenAnalyzer to
define the separators for the tokens.

Non-empty string, contains no
duplicates.

Either alphabet or separator is
required.

casesensitive Used in CommonTokenAnalyzer to
specify whether the tokens are
compared case sensitively.

“yes”/”true”/”on” is translated to
true, other values translated to
false.

optional, false if not specified

3.3 Dependencies Configuration

Magic Numbers require configuration.

4. Usage Notes

4.1 Required steps to test the component

• Extract the component distribution.

• Follow Dependencies Configuration.

• Execute ‘ant test’ within the directory that the distribution was extracted to.

4.2 Required steps to use the component

Follow configuration instructions.

4.3 Demo

4.3.1 Configure File Statistics
// create a file statistics instance
FileStatistics statistics = new FileStatistics();

 // create file matchers
 FileMatcher matcher1 = new AnyFileMatcher();
 FileMatcher matcher2 = new ExtensionMatcher(“txt”);
 FileMatcher matcher3 = new RegexMatcher(Pattern.compile(“pattern”);
 FileMatcher matcher4 = new TextFileMatcher();
 FileMatcher matcher5 = new BinaryFileMatcher();
 FileMatcher matcher6 = new TypeNameMatcher(“Java”);
 FileMatcher matcher7 = new MimeMatcher(“text/plain”);
 // create file processors
 FileProcessor processor1 = new TextLineCounter(“Text File”, matcher1);
 FileProcessor processor2 = new CStyleLineCounter(“Source File”, matcher6);
 // create stats reporting implementation
 StatsReporting reporting1 = new BasicStatsReporting();
 StatsReporting reporting2 = new XmlStatisReporting(“stylesheet/xml_to_html.xsl”);
 // manipulate file processors
 statistics.addFileProcessor(processor1);
 statistics.addFileProcessor(processor2);
 FileProcessor removed = statistics.removeFileProcessor(“Source File”);
 FileProcessor query = statistics.getFileProcessor(“Text File”);
 List processors = statistics.getAllFileProcessors();
 statistics.clearAllFileProcessors();
 // manipulate reporting
 StatsReporting original = statistics.getReporting();
 statistics.setReporting(reporting2);
 // manipulate match all flag
 if (!statistics.isMatchAll()) statistics.setMatchAll(true);

4.3.2 Configure Custom Renders
// create some custom renderers
StatisticRenderer renderer1 = new CommonTokenPlainRenderer();
StatisticRenderer renderer2 = new CommonTokenXmlRenderer();
// manipulate the renderers
reporting.addRenderer(metric1, renderer1);
reporting.addRenderer(metric2, renderer2);

StatisticRenderer removed = reporting.removeRenderer(metric);
StatisticRenderer query = reporting.getRenderer(metric2);
Map renderers = reporting.getAllRenderers();
reporting.clearAllRenderers();

4.3.3 Process File
// process single file
statistics.processFile(new File(“test_files/a/p.txt”));
statistics.processFile(new File(“test_files/b/q.java”));
// process directory
statistics.processDirectory(new File(“test_files/a”));
statistics.processDirectory(new File(“test_files”), true);

4.3.4 Generate Report
// obtain report
String report = statistics.getStatsReporting().generateReport();
// output report
statistics.printReport();
statistics.printReport(new File(“test_files/output.html”));
// reset reporting
statistics.getStatsReporting().reset(new File(“test_files”));

4.3.5 Command Line Interface
// specify configuration file
-c conf/FileStatistics.xml a.txt b.java
// specify namespace
-n com.topcoder.file.statistics a.txt b.java
// specify base directory
-b test_files a.txt b.java
// recursively process sub-directory
-r test_files
// specify output file
-o test_files/output.html a.txt b.java

5. Future Enhancements

Provide useful file matchers and file processors.

	File Statistics 2.0a Component Specification
	Design
	Design Patterns
	Industry Standards
	Required Algorithms
	Counting Lines in C Style Source Codes
	Command Line Interface
	Xml Reporting

	Component Class Overview
	Package com.topcoder.file.statistics
	Package com.topcoder.file.statistics.processor
	Package com.topcoder.file.statistics.processor.linecounter
	Package com.topcoder.file.statistics.processor.commontoken
	Package com.topcoder.file.statistics.matcher
	Package com.topcoder.file.statistics.reporting

	Component Exception Definitions
	Custom Exceptions
	System Exceptions

	Thread Safety

	Environment Requirements
	Environment
	TopCoder Software Components
	Third Party Components
	Apache Xalan 2.6.0: used to apply XSLT against reporting XML

	Installation and Configuration
	Package Name
	Configuration Parameters
	Dependencies Configuration

	Usage Notes
	Required steps to test the component
	Required steps to use the component
	Demo
	Configure File Statistics
	Configure Custom Renders
	Process File
	Generate Report
	Command Line Interface

	Future Enhancements

