

Distributed Protocol Factory 1.0 Requirements Specification

1. Scope

1.1 Overview
This component provides a factory for accessing a distributed protocol and a default protocol for
supporting distributed systems. This protocol is a data transfer protocol for ensuring all nodes in a group
receive an update, or none receive the update. It is intended to be used by a variety of application types.

The component will support a factory method for loading the protocol, so that specialized protocols can
be substituted for the default protocol, when necessitated by the needs of the application.

1.2 Logic Requirements

1.2.1 Protocol Factory
A factory method will be used to allow the application to select a data synchronization protocol at run-
time.

1.2.2 Distributed Data API
An API will be defined in an interface that exposes the functionality for an application to make use of this
component for distributed data management.

1.2.3 Message Broadcast
The API will support a means for a node in the group to broadcast changes to other nodes. The calling
application will be notified if the broadcast was successfully received or not.

1.2.4 Message Receipt
• The API will support a means for nodes in the group to receive and confirm messages.
• All nodes will receive messages in the same order as other nodes in the group.
• A message must be received by all or none of the nodes in a group.

1.2.5 Error Notification
The API will support a means for an application to notify a message sender that a message received was
acted on and caused an error to occur on a remote server. This error handling would be implemented on
top of the protocol, not as part of the protocol.

1.2.6 Protocol Decoupling
The API will not require the application to have knowledge of implementation details. Including:

• Identities of other servers
• Entry/Exit of other servers from the group
• Underlying protocol layers (e.g. TCP/IP or UDP, etc.)

1.2.7 Application Re-sync
The API will allow a node to re-sync with the group when it comes back online. This will occur at the
application and be supported by allowing multiple messages.

1.2.8 Group Move
The API will provide a means for an application to switch groups. NB: This should be done in a manner
consistent with requirement 1.2.5

1.2.9 Group Move
A node can be moved into a group of zero nodes.

Confidential ©TopCoder Software, Inc. 2002 Page 1

1.2.10 Default Implementation
A default implementation of the protocol will be provided with the component. The default implementation
will assume all nodes are on the same subnet, therefore multicast is allowed.

1.2.11 Fault Tolerance
The default protocol implementation must support failure of one or more nodes in the group
(simultaneously or otherwise).

1.2.12 Scalability
The protocol will provide functional scalability across multiple servers; i.e. the algorithm logic is as correct
for n+1 servers as it is for n. (Expected performance bottleneck points should be identified.)

1.3 Required Algorithms
The design of the component should specify algorithms necessary for guaranteeing broadcasts are
received by all or none of the nodes.

1.4 Example of the Software Usage
Example 1 – Distributed Cache
The current version of the Distributed Simple Cache implements a protocol that deadlock if more than half
of the servers in a group fail. This component would be used instead to decouple the implementation of
the synchronization from the cache. Depending on an application’s requirements, different protocol
implementations could be used that optimize for various attributes, such as speed or stability.

Example 2 – Distributed Configuration Manager
A new persistence layer for the configuration manager could be built that allowed synchronization across
multiple application servers. This layer would use the default protocol implementation to guarantee that all
application servers were received the same updates to their configurations. If the environment was
changed from non-clustered to clustered application servers, then a new protocol could be built that
utilizes app server clustering properties to more effectively handle the synchronization.

1.5 Future Component Direction
Protocols that are highly tailored to specific target environments or that use different assumptions, could
be built and offered as part of this component.

2. Interface Requirements

2.1.1 Graphical User Interface Requirements
None.

2.1.2 External Interfaces
The design of this component will identify any necessary underlying protocols (such as tcp/ip or udp.)
LGPL is discouraged, JINI and JXTA are allowed.

2.1.3 Environment Requirements
• Development language: Java 1.4
• Compile target: Java 1.4
• Multiple runtime environments

o WebLogic
o JBoss
o JVM 1.4

• It is not guaranteed that the component will be running inside a J2EE container, but the J2EE

Confidential ©TopCoder Software, Inc. 2002 Page 2

jar will be accessible.

2.1.4 Package Structure
TopCoder.Network.Synchronization

3. Software Requirements

3.1 Administration Requirements

3.1.1 What elements of the component need to be configurable?
The protocol implementation should be configurable programmatically.

3.2 Technical Constraints

3.2.1 Are there particular frameworks or standards that are required?
As determined by design.

3.2.2 TopCoder Software Component Dependencies:
None. (Do not use configuration manager, directly or indirectly.)

Component does not need to use base exception (but can at designers discretion) because Java 1.4
supports chained exceptions natively.

3.2.3 Third Party Component, Library, or Product Dependencies:
None.

3.2.4 QA Environment:
• Solaris 7
• RedHat Linux 7.1
• Windows 2000
• Windows 2003

3.3 Design Constraints
The component design and development solutions must adhere to the guidelines as outlined in
the TopCoder Software Component Guidelines. Modifications to these guidelines for this
component should be detailed below.

3.4 Required Documentation

3.4.1 Design Documentation
• Use-Case Diagram
• Class Diagram
• Sequence Diagram
• Component Specification

3.4.2 Help / User Documentation
• Design documents must clearly define intended component usage in the ‘Documentation’ tab

of Poseidon.

Confidential ©TopCoder Software, Inc. 2002 Page 3

	Distributed Protocol Factory 1.0 Requirements Specification
	Scope
	Overview
	Logic Requirements
	Protocol Factory
	Distributed Data API
	Message Broadcast
	Message Receipt
	Error Notification
	Protocol Decoupling
	Application Re-sync
	Group Move
	Group Move
	Default Implementation
	Fault Tolerance
	Scalability

	Required Algorithms
	Example of the Software Usage
	Future Component Direction

	Interface Requirements
	Graphical User Interface Requirements
	External Interfaces
	Environment Requirements
	Package Structure

	Software Requirements
	Administration Requirements
	What elements of the component need to be configurable?

	Technical Constraints
	Are there particular frameworks or standards that are requir
	TopCoder Software Component Dependencies:
	Third Party Component, Library, or Product Dependencies:
	QA Environment:

	Design Constraints
	Required Documentation
	Design Documentation
	Help / User Documentation

