

Relation Component Requirements Specification

1. Scope

1.1 Overview
This component consists of data structures which represent tuples and relations. It also includes
a relationally complete set of operations for manipulating those data structures.

1.2 Logic Requirements

1.2.1 Tuples
A tuple is an unordered set of values. Each value is associated with an attribute name and is
represented by a specified type. The set of attributes contained in a tuple creates a tuple type.

Example:

The ‘pet’ type may be defined as:

(name:java.lang.String age:int species:com.petstore.common.Species weight:int)

1.2.2 Tuple Constraints
The component will include the ability to define constraints for a tuple which can be used to
validate each field in the tuple.

Example constraints:
120 > age > 0
weight > 0

The component will include standard constraints to enforce the following:

1) a given numeric value is within a given range
2) a given numeric value is greater than, less than or equal to another value in the tuple
3) a given string value matches a given regular expression

The component will also allow custom tuple constraints to be added by users.

1.2.3 Relations
A relation is a data structure that is composed of two parts: a header and a body. The header
consists of attribute names and their types and defines the type of the relation. The body
consists of a set of tuples where each tuple contains a value of the specified type for each name
in the header. Each tuple in a relation is unique.

Example:

A type ‘pet’ may have attributes ‘species’, ‘name’, ‘age’, ‘weight’. A relation of type ‘pet’ may
contain these tuples:

 (name:Fido age:3 species:Dog weight:30)
 (name:Fluffy age:2 species:Cat weight 120)
 (weight:300 age:5 species:horse name:Trigger)

 It is not be legal to add any of the following tuples:

 () -- empty tuple is illegal since all fields are null

Confidential ©TopCoder Software, Inc. 2002 Page 1

 (name:Rover) -- missing fields
 (name: age:4 species:Dog weight:35) -- no value for ‘name’ attribute

Adding a duplicate tuple to the relation has no affect. It’s not an error, but number of tuples
contained by the relation does not change.

1.2.4 Relation Constraints
The component will include an ability to define relation-level constraints. These constraints will
be used to verify that added tuples don’t contradict each other.

Example:

Rel1 = ((id:101 value:Cat)
 (id:101 value:Dog))

Constraint = unique(id)

‘Rel1’ by itself is a valid relation but contradicts itself. The unique constraint is added to help
guarantee the integrity of the relation. The component will provide a custom constraint to enforce
the uniqueness of one or more attributes. The component will also allow custom relation
constraints to be added by users.

1.2.5 Relation Operations
The result of any relational operation is another relation. The resulting relation may be empty, but
will never be ‘null’. This component will support the relational operations below.

1.2.5.1 Project Operation
The ‘project’ operation returns a relation containing all tuples in the original relation with the
supplied columns removed. Duplicates are removed.

Example:

a projection of [‘weight’, ‘species’] over ‘pet’ will result in:

 (name:Fido age:3)
 (name:Fluffy age:2)
 (age:5 name:Trigger)

1.2.5.2 Restrict Operation
The ‘restrict’ operation accepts a condition and returns a relation containing the tuples for which
the condition is true.

Example:
A restriction of [age > 2] will result in:

 (name:Fido age:3 species:Dog weight:30)
 (weight:300 age:5 species:horse name:Trigger)

1.2.5.3 Union Operation
The ‘union’ operation combines two relations of the same type into a single relation. Duplicates
are removed.

Example

Confidential ©TopCoder Software, Inc. 2002 Page 2

Rel1 = ((a:1 b:2 c:3)
 (a:2 b:3 c:4))

Rel2 = ((a:10 b:20 c:30)
 (a:1 b:2 c:3))

Rel1 union Rel2 = ((a:1 b:2 c:3)
 (a:2 b:3 c:4)
 (a:10 b:20 c:30))

1.2.5.4 Difference Operation

The ‘difference’ operation accepts two relations of the same type and returns a relation that
includes each tuple that is in the first relation, but not the second.

Example:

Rel1 = ((a:1 b:2 c:3)
 (a:2 b:3 c:4))

Rel2 = ((a:10 b:20 c:30)
 (a:1 b:2 c:3))

Rel1 difference Rel2 = ((a:2 b:3 c:4))

1.2.5.5 Natural Join Operation
The natural join operator combines two relations based on the values of common attributes.
Tuples are extended to include all attributes in both relations. Duplicates are removed.

Example:

Rel1 = ((a:1 b:2 c:3)
 (a:2 b:3 c:4))

Rel2 = ((a:1 x:0)
 (a:2 x:1)
 (a:3 x:2))

Rel1 join Rel2 = ((a:1 b:2 c:3 x:0)
 (a:2 b:3 c:4 x:1))

1.2.5.6 Conditional Join
The conditional join operator is similar to the natural join operator except that the join criteria is
specified by the component user. Duuplicates are removed

Example

Rel1 = ((a:1 b:2 c:3)
 (a:2 b:1 c:4))

Rel2 = ((a:1 x:0)
 (a:2 x:1)
 (a:3 x:2))

Rel1 join Rel2 on (Rel1.a = Rel2.a and Rel1.b = Rel2.x)

Confidential ©TopCoder Software, Inc. 2002 Page 3

= ((a:2 b:1 c:4 x:1))

1.2.5.7 Outer Join Operation
The outer join operation is a special type of join which assumes that when a value is missing in a
on one side of the join, then the tuple should be included. For this component a left outer join will
be used.

Example:

Rel1 = ((a:1 b:2 c:3)
 (a:2 b:3 c:4)
 (a:3 b:4 c:5))

Rel2 = ((a:1 x:2)
 (a:2 x:3))

Rel1 left outer join Rel2 on (Rel1.a = Rel2.a and Rel1.b = Rel2.x)
 = ((a:1 b:2 c:3 x:2)
 (a:2 b:3 c:4 x:3)
 (a:3 b:4 c:5 x:unknown))

While it’s not generally possible for a relation to contain nulls, the outer join is an exception to that
rule. The component will not use java’s ‘null’ to represent missing information, but will define a
special value that indicates missing information.

1.2.5.8 Intersection Operation
The ‘intersection’ operation is a special case of join which requires the two input relations to be of
the same type. It will return each tuple that appears in both relations.

1.2.5.9 Product Operation
The ‘product’ operation distributes each element of each tuple in Rel1 over each element of each
tuple in Rel2. Duplicates are removed.

Example:

Rel1 = ((a:1 b:2 c:3)
 (a:2 b:3 c:4))

Rel2 = ((x:9 y:8 z:7)
 (x:6 y:5 z:4))

Rel1 product Rel2 = ((a:1 b:2 c:3 x:9 y:8 z:7)

 (a:1 b:2 c:3 x:6 y:5 z:4)
 (a:2 b:3 c:4 x:9 y:8 z:7)
 (a:2 b:3 c:4 x:6 y:5 z:4))

1.2.6 XML Representation
The component will include a method for creating an XML representation of a given relation. It
will also include a method to re-create a relation from the XML.

1.2.7 DataSet
The component will include a method for creating a relation from a System.Data.Sql.DataSet
object.

Confidential ©TopCoder Software, Inc. 2002 Page 4

1.2.8 Performance

This component will be used with data sets of varying sizes. Algorithms for each operation will be
chosen to provide the best average performance for both small (e.g. 10 tuples/relation) data sets
and large (e.g. 100000 tuples/relation) data sets. Justification will be given for each selected
algorithm.

1.3 Required Algorithms
As described in Logic Requirements.

1.4 Example of the Software Usage
This component could be used in a data abstraction layer to contain data returned from SQL
queries and to perform operations on that data. In essence, this may be the returned type from a
DAO layer.

1.5 Future Component Direction
None Defined.

2. Interface Requirements

2.1.1 Graphical User Interface Requirements
None Defined

2.1.2 External Interfaces
None Defined

2.1.3 Environment Requirements

• Development language: C#

• Compile target: Microsoft .net Framework v1.1

2.1.4 Package Structure
TopCoder.Persistence.Relation

3. Software Requirements

3.1 Administration Requirements

3.1.1 What elements of the application need to be configurable?
The tuple types and constraints will be configurable. The example below is a suggested syntax,
but it is not required that the component follow this. The designer will choose the most
appropriate syntax.

Example:
<relation>
 <attribute>
 <attribute-name>name</attribute-name>
 <attribute-type>System.String</attribute-type>
 </attribute>
 <attribute>
 <attribute-name>weight</attribute-name>
 <attribute-type>System.Decimal</attribute-type>
 </attribute>
 <attribute>
 <attribute-name>species</attribute-name>

Confidential ©TopCoder Software, Inc. 2002 Page 5

 <attribute-type>PetStore.Species</attribute-type>
 </attribute>
 <attribute>
 <attribute-name>age</attribute-name>
 <attribute-type>System.Decimal</attribute-type>
 <tuple-constraint>
 <constraint-class>PetStore.Constraints.WeightConstraint</constraint-class>
 </tuple-constraint>
 </attribute>
 <relation-constraint>
 <constraint-class>TopCoder.Persistence.Constraints.UniqueConstraint</constraint-class>
 <constraint-param>name</constraint-param>
 </relation-constraint>
</relation>

3.2 Technical Constraints

3.2.1 Are there particular frameworks or standards that are required?
None defined.

3.2.2 TopCoder Software Component Dependencies:
**Please review the TopCoder Software component catalog for existing components that can be
used in the design.

3.2.3 Third Party Component, Library, or Product Dependencies:
None Defined

3.2.4 QA Environment:
• Windows 2000
• Windows 2003

3.3 Design Constraints
The component design and development solutions must adhere to the guidelines as outlined in
the TopCoder Software Component Guidelines. Modifications to these guidelines for this
component should be detailed below.

3.4 Required Documentation

3.4.1 Design Documentation
• Use-Case Diagram
• Class Diagram
• Sequence Diagram
• Component Specification
• XML Schema for Relation XML representation
• XML Schema for Relation and Tuple definition (configuration)

3.4.2 Help / User Documentation
• Design documents must clearly define intended component usage in the ‘Documentation’ tab

of Poseidon.

Confidential ©TopCoder Software, Inc. 2002 Page 6

http://www.topcodersoftware.com/pages/c_showroom.jsp

	Relation Component Requirements Specification
	Scope
	Overview
	Logic Requirements
	Tuples
	Tuple Constraints
	Relations
	Relation Constraints
	Relation Operations
	Project Operation
	Restrict Operation
	Union Operation
	Difference Operation
	Natural Join Operation
	Conditional Join
	Outer Join Operation
	Intersection Operation
	Product Operation

	XML Representation
	DataSet
	Performance

	Required Algorithms
	Example of the Software Usage
	Future Component Direction

	Interface Requirements
	Graphical User Interface Requirements
	External Interfaces
	Environment Requirements
	Development language: C#
	Compile target: Microsoft .net Framework v1.1

	Package Structure

	Software Requirements
	Administration Requirements
	What elements of the application need to be configurable?

	Technical Constraints
	Are there particular frameworks or standards that are requir
	TopCoder Software Component Dependencies:
	Third Party Component, Library, or Product Dependencies:
	QA Environment:

	Design Constraints
	Required Documentation
	Design Documentation
	Help / User Documentation

