
Document Indexer Persistence Component
Specification

1. Design
The Document Indexer Persistence component implements the persistence layer as
required by the Document Indexer component. The pluggable framework allows
different persistence mechanisms to be used. For the initial version, two mechanisms
(XML and database) are provided. The primary emphasis of this design is on a fast
retrieval solution, since we are dealing with an indexed document, which could
consist of thousands of indexed words any gains in speed of retrieval will be
compounded when collections of documents are loaded since a collection could be
made of a multitude if indexed documents.

1.1.1 Anatomy of the proposed design

The design itself is very simple. We have two implementations:
1. Database driven persistence
2. XML file driven persistence

1.1.1.1 Database considerations

The main aspect of the design here will be the fact that the designer decided after
some research to use a compact structure of a CLOB (or byte data) to store all the
words and their positions for a given document. This will speed up retrieval in an
order of about 40x (i.e. more than 40000% which is tremendous boost for the
component’s usability - please look at the provided benchmark exposition in
Appendix B of this document, you could confirm the results for yourself) but there is
a caveat to this approach in the sense that it hides the word data in a single record
and thus makes some data mining more difficult. Here is a better expose of this.

There are two ways to tackle the issue of table design:

• We simply normalize the data and create four tables. First table will hold the
document id, document usage count, and all the WordSourceID information
except the delimiter list, the second table will hold all the delimiters that were
used in indexing this document, the third table will hold all the words related
by the document id, and finally the fourth table would contain for each word
the positions where the word appears in the document.

• If we replace the third and fourth tables mentioned above with a single table,

which holds a CLOB of all the words and their positions, we will obtain a much
more compact storage than the previous one. While the other storage is a bit
more ‘friendly’ since we can easily query the database for some additional
relationships such as show me all the documents that contain the word
“Hello”, the speed retrieval benefits far outweigh the ‘friendliness’ of the first
approach.

Thus we have speed vs. simplicity of design issue here. Since the component is very
simple the designer has decided to provide two implementations of data base
persistence:

• A fast implementation that uses CLOB data storage type.
• A simple implementation that is done in a more traditional manner.

The user will then have a simple pluggable choice of what they would like to use.

NOTE: in Informix A CLOB column can be up to 4 terabytes in length. This is so large
that we do not have to anticipate using multiple CLOB records to store a single
index.

There is another consideration to be taken care of when dealing with the fast
implementation. Since we are creating a stream of sequential data we need to know
how to parse the words and their positions from the Unicode char stream. Here we
could have a small problem: if we wanted to use delimiters to specify when one
words begins and another ends we have to be extra careful not to use delimiters that
could actually be part of a legitimate word (since then we would split a word into two
words) The good news is that the design already provides us with the solution. Since
we persist the delimiter list used for this document index we will use the delimiters
from this list to delimit the CLOB data. This way there will be no chance of any
conflicts.

1.1.1.1.1 Proposed CLOB structure
We simply take the first delimiter in that list and use it as a delimiter in our CLOB. As
an example assume that the delimiter we will use is the null character ‘\0’, we will
simply use a single version of this delimiter to delimit positions and a double
occurrence of this delimiter to delimit words. Here is the CLOB structure to be used
and an example with the delimiter being a ‘\0’

PDP2 … P1 … PD Word2WDPnPD P1 PD Word1

Where PD is a position delimiter and WD is a word delimiter, and where Px is position
x for the word in the document.

Here is an example:

 189 \030 \0 World \0\0123 \045 \0 5 \0 Hello

Note that we use the \0 character as a position delimiter and a twice-repeated \0 as
a word delimiter. This means that all that we ever need is a single delimiter and the
design guarantees that we will never get an empty list of delimiters.

1.1.1.2 XML considerations

Given the requirements that we store indexed data in separate files for each
document we already have a simple way of dealing with document index: we simply
store each document with a specific xml file and to keep the structure simple we
create a document node which then has word sub nodes where each word sub-node
will store all the word positions again as sub nodes. Here is a simplified overview:

<do
 <document-index document-id=”16527”>

c xml:lang="en-US"> // note that for locale we will also use xml specific tag.

 <word-source-data>
 <source-identity> identity object as a base64 encoded object

 </source-identity>
 <class-name> class name </class-name>
 <locale language=”en” country=”US” variant=”POSIX”/>
 <delimiters>
 <entry delimiter=” “/>
 <entry delimiter=”\n“/>
 <entry delimiter=”\r“/>
 <entry delimiter=”\t“/>
 </delimiters>
 </word-source-data>
 <word-index>
 <word> Hello </word>
 <pos> 24 </pos>
 <pos> 56 </pos>
 . . .
 </word-index>
 . . .
 </document-index>
 </doc>

Collections will be quite simple since all we need to collection is the document ids as
follows:

 <document-collection collection-id=”37684”>
 <documents>

 <document-id>16572</document-id>
 <document-id>46537</document-id>

 . . .
 </ documents>
 </document-collection>

Another thing to consider is how do we relate the usage of documents? The designer
has decided to create a relating (basically we are modeling a relationship of usage to
document and document to all the collections that it belongs to) xml as follows:

 <documents>

<document-usage document-id=”16572” usage-count=5>
 <collection-inclusion>
 <collection collection-id=”37684”/>
 <collection collection-id=”11111”/>
 </collection-inclusion>
</document-usage>
<document-usage document-id=”46537” usage-count=0>
</document-usage>

 . . .
 </documents>

The reason for this extra document is that this document will be updated possibly
often and since xml updates basically mean file rewrites we need to ensure that the
file is reasonably small (as compared to rewriting an document index file) and thus
we guarantee a relatively fast update. This file will only be overwritten when data in
a collection changes, either as a result of a document addition or document deletion.
This file will always be named document_usage.xml

1.1.1.2.1 How do we use all these files?

The basic idea is that for each document we will have an xml file, for each collection
we will have an xml file, and we will exactly one xml file for document usage.

But we still have a very important issue unanswered: how do we identify which xml
file belongs to which collection/document? Also there is the issue of storage limit.
Since files have a limited capacity (such as 2G for example), how do we ensure that
we can store files larger than that if need be?

First we will tackle the general file naming which is very simple.

• Each collection xml file name will have the following format:
doc_collection_collectionId.xml

• Each document index file name will have the following format:
doc_index_docId_sequenceid.xml

For example here is a simple document collection xml file for a collection with id of
175658:

 doc_collection_175658_.xml

Here is an example of a document index xml file for a document with id of 16527:

 doc_index_16527_001.xml

The sequenceid is used to ‘link’ files with data that is larger than say a limit of 2G
(this can be configured) this means that if we have indexed data that is larger than
say 2G we split the file into 2 files with the first having the sequence id of 001 and
the second one being obviously 002. This gives the flexibility for persistence of very
large content.

1.1.2 Data base diagram, ERD, and DDL

Here is a simplified data base diagram, which is followed, by an ERD and then a DDL
for Informix.

Data base diagram

Fast access solution

N

M

1 1
Document-Index Word-Data

Document-Collection

N

1

Delimiter

The above basically states the following
1. A document has one record (a CLOB) associated with it which contains all the

word data
2. A document can have one or more delimiters associated with it
3. A document can be associated to many collections. Here we have actually 0

or more. It is possible for a document to belong to no collection.
4. A collection can hold many documents. Here we have actually 0 or more. It is

possible for a document collection to contain no documents (i.e. an empty
collection)

Simple solution

N

M

N 1
Document-Index Word

Document-Collection

N

1

Delimiter-List

1 N
Position

The above basically states the following
1. A document has many words
2. Each word can have many positions
3. A document can have one or more delimiters associated with it
4. A document can be associated with many collections.
5. A collection can hold many documents

ERD

Two ERD diagrams have been placed in the Appendix (Appendix A) to this document
as well as in the \docs directory as JPEG files.

DDL

Simple Access Solution:

CREATE TABLE DOCUMENT_COLLECTION_DOCUMENT_XREF
(
 COLLECTION_ID VARCHAR(40),
 DOCUMENT_ID VARCHAR(40),
 FOREIGN KEY (COLLECTION_ID) REFERENCES DOCUMENT_ COLLECTION,
 FOREIGN KEY (DOCUMENT_ID) REFERENCES DOCUMENT
)

CREATE TABLE DOCUMENT_ COLLECTION
(
 COLLECTION_ID VARCHAR(40) PRIMARY KEY
)

CREATE TABLE DOCUMENT
(
 DOCUMENT_ID VARCHAR(40) PRIMARY KEY,
 LOCALE VARCHAR(30),
 SOURCE_IDENTITY BLOB,
 CLASS_NAME VARCHAR(255),
 USE_COUNT INTEGER
)

CREATE TABLE DELIMITER
(
 DOCUMENT_ID VARCHAR(40),
 DELIMITER_ENTRY VARCHAR(10),
 FOREIGN KEY (DOCUMENT_ID) REFERENCES DOCUMENT
)

CREATE TABLE WORD
(
 WORD_ID INTEGER PRIMARY KEY,
 DOCUMENT_ID VARCHAR(40),
 WORD_ENTRY VARCHAR(255),
 FOREIGN KEY (DOCUMENT_ID) REFERENCES DOCUMENT
)

CREATE TABLE WORD_POSITION
(
 DOCUMENT_ID VARCHAR(40),
 WORD_ID INTEGER,
 WORD_POSITION INTEGER,
 FOREIGN KEY (DOCUMENT_ID) REFERENCES DOCUMENT,
 FOREIGN KEY (WORD_ID) REFERENCES WORD,
)

Fast Solution

CREATE TABLE DOCUMENT_COLLECTION_DOCUMENT_XREF
(
 COLLECTION_ID VARCHAR(40),
 DOCUMENT_ID VARCHAR(40),
 FOREIGN KEY (COLLECTION_ID) REFERENCES DOCUMENT_ COLLECTION,
 FOREIGN KEY (DOCUMENT_ID) REFERENCES DOCUMENT
)

CREATE TABLE DOCUMENT_COLLECTION
(
 COLLECTION_ID VARCHAR(40) PRIMARY KEY
)

CREATE TABLE DOCUMENT
(
 DOCUMENT_ID VARCHAR(40) PRIMARY KEY,
 LOCALE VARCHAR(30),
 SOURCE_IDENTITY BLOB,
 CLASS_NAME VARCHAR(255),
 USE_COUNT INTEGER
)

CREATE TABLE DELIMITER
(
 DOCUMENT_ID VARCHAR(40),
 DELIMITER_ENTRY VARCHAR(10),
 FOREIGN KEY (DOCUMENT_ID) REFERENCES DOCUMENT
)

CREATE TABLE WORD_DATA
(
 DOCUMENT_ID VARCHAR(40),
 WORD_ENTRY CLOB,
 FOREIGN KEY (DOCUMENT_ID) REFERENCES DOCUMENT
)

1.1.3 XML diagram and XSD schema

Simple file break-down

doc_index_xxx.xml

doc_usage.xml

M
doc_collection_xxx.
xml

N

1

N

The above diagram is really a simple depiction of the following:

1. A single document index might have a number of sequences
2. There can be many documents referred in the document usage file.
3. A single document collection might have a number of sequences
4. A Collection may consist of many documents (0 or more)
5. A document can belong to many Collections (0 or more)
6. There is only one usage document, which tracks all document index usage in

the Collections. This is very important when we would like to ask a question
such as which Collections does this document index belong to?

XSDs for all the xml files
Those are located in the \docs directory.

1.2 Design Patterns
No specific pattern shave been utilized since this is an implementation of
existing interfaces with plug-in capability (i.e. Strategy) and manager
abstraction (i.e. Façade) already in place. This means that the classes
provided by this design participate in an existing Strategy and Façade
patterns.

1.3 Industry Standards

XML, JDBC 3.0

1.4 Required Algorithms

Here we will deal with some pseudo code for dealing with database and xml. Some
algorithms will not be discussed since they are either very simple or should be
common knowledge to a developer. Aspects of serializing an object to a database will
not be described since this is a basic java programming skill.

Very important note: there is a flaw in the original Document Indexer v 1.0 design,
which assumes that a document index can be uniquely identified by WordSourceId
instance. This is unfortunately a design mistake, which has the following implication
for a data base implementation:

1. An object can not be used as a key in a database
Even if we break the object down into a composite key (such as locale,

className, etc) this will still not work since delimiters are of variable length

(i.e. an array) and sourceIdentity is a serializable object (which puts us back
in square one)

2. We could simply not use a primary key, dump everything into a BLOB (or
some combination of keys) but then this solution becomes quite ridiculous
since we can’t use SQL to fetch anything (again how do we target a BLOB or
a byte array object in our query?) and iterative approach would kill the
efficiency of this component.

Either way, these issues have been raised in the forums but have not been
addressed.
I propose to make the following assumption: I will use the hashCode() of the
WordSourceId as an actual DOCUMENT_ID in the database, and this will be used as
a primary key used to identify the document uniquely. This is not a perfect solution
and a better one would have been to explicitly force the WordSourceId to actually
have a simple String or int based id. This would involve a change to the API, which at
this point this designer didn’t want to attempt since possibly many changes would
have to be affected.

1.4.1 CRUD for Document index data from simple access database

Here we will deal with the aspects of CRUD with reference to the simple non-access
optimized data base structure.

1.4.1.1 Reading a document index

 Step 1. For the given document index ID Fetch the record with the

specified DOCUMENT_ID.
Step 1a. read in LOCALE, CLASS_NAME, and

SOURCE_IDENTITY that are stored in the
fetched record.

 - Reading LOCALE is done in the following manner. Since the
 format of the string is Language_Country_Version we need to

parse the string to get the constituent parts. We should watch
out for the following variations: Language_Country, Language.
There should be no other variants present.
- CLASS_NAME is just a simple string
- SOURCE_IDENTITY is also just a String.
Step 1b. Fetch all the DELIMITER records matching the

document index ID.
- Create a String array based on the size of
returned record set
For each record put the DELIMITER_ENTRY string
into the array.

Create a new object of the type WordSourceID and initialize it
with the above data.

 Step 2. Fetch all the WORD records where DOCUMENT_ID is the index
document id that we are looking for.
- create a collator with the previously read in Locale
 Collator myCollator = Collator.getInstance(locale);

- Create a Map where we will put all the words and
 Map myMap = new HashMap();

For each record fetch all the WORD_POSITION records where
DOCUMENT_ID is the index we are looking for and WORD_ID is

the id of the current word in the WORD record.
- Create a CollationKey object initialized with the current
word.

 CollationKey key = myCollator.getCollationKey(currWord);
- create a List in which we will keep all the positions for the
current word.
 List myList = new ArrayList();

 For each WORD_POSITION record add the position to
the list wrapped into an Integer instance:

list.add(new Integer(currpos));
 - add the list to the Map
 myMap.put(key, mylist);

Step 3. Create a new DocumentIndex object and initialize with the
fetched data and return it to the caller.

 return document;

DocumentIndex document = new DocumentIndex(WordSourceID, myMap);

1.4.1.2 Deleting an indexed document

 - START_TRANSACTION
 Step 1. For the input index id we delete the DOCUMENT record
 Step 2. Delete all the WORD records matching the input document

index id on the DOCUMENT_ID field.
 Step 3. Delete all the WORD_POSITION records matching the input

document index id on the DOCUMENT_ID field.
 Step 4. Delete all the DELIMITER records matching the input document

index id on the DOCUMENT_ID field.

Step 5. Delete all the DOCUMENT_COLLECTION_DOCUMENT_XREF
records matching the input document index id on the
DOCUMENT_ID field. This needs to be done to keep the
collections consistent so that they do not point to non-existent
data.

 - END_TRANSACTION

If there were any issues during any step we rollback the transaction and
throw an exception.

1.4.1.3 Creating a new document

Preconditions:

1. Contains a unique document index id.
2. Contains a valid Locale
3. Contains a non-empty list of delimiters with at least one delimiter
4. Contains at least one word which contains at least one position

- START_TRANSACTION
 Step 1. Create a temporary idCounter, which we will use for word ids.

Initialize it to 1.
 int idCounter = 1;

 Step 2. Create a new DOCUMENT record.

 - Fill in the information for CLASS_NAME, SOURCE_IDENTITY.
 - When filling in locale simply insert locale.toString()
 - We also set the USE_COUNT to 0 since this document is not

currently part of any collections.
 Step 3. Create a DELIMITER record for each member of the delimiters

array in the wordSourceId variable.
 Step 4. For each entry in the words Map we obtain the key (which is a

CollationKey type and we extract the word from it)
For each key we extract the word:
 key.getSourceString()
and we create a new WORD record initialized with it. We use
the current idCounter as the word id.
Step 4a. For the current key we extract from the

DocumentIndex.words map the list of positions.
For each position we create a new
WORD_POSITION record and we initialize it with
the integer position as well as the current
document id and the word id.

 Step 4b. increment the counter to generate a new word id.
 idCounter++;

 - END_TRANSACTION

 If there were any issues during any step we rollback the transaction and

throw an exception.

1.4.1.4 Update a document index

The API currently has no direct update capabilities.

1.4.2 CRUD for Document index data from fast access database

Since this is basically the same structure as the simple access variant, the discussion
here will be specifically around the structure of the CLOB and the means of reading
and writing it.

1.4.2.1 Creating CLOB word data

Given the CLOB structure as depicted on page 2 we need to go through the following
steps:

 Step 1. Create the word and position delimiters to be used
 - We take the first delimiter from the delimiter list supplied with

the document to be persisted:
 DocumentIndex.wordSourceID.delimiters[0]

 - To create a position delimiter (posDelimiter) we will simply
take the above delimiter
- To create a word delimiter (wordDelimiter) we simply
concatenate the posDelimiter twice.

 Step 3. We create a new WORD_DATA record and initialize it with the
proper document index id.

 Step 2. We now simply write out all the words and their positions,
sequentially into the CLOB (make sure that they are written as

UNICODE rather than ASCII) and delimit the positions and
words with the proper delimiters.

1.4.2.2 Reading word data out of a CLOB

This is a simple, reverse process of the writing. The only concern would be how do
we parse the words and positions with using delimiters where one delimiter is a
subset of the other. This can be very easily done with a primitive state machine
where we start in the state of read-word and then read characters until we hit a
possible delimiter, a delimiter is only decided when we hit a non delimiting character
(by this time we know that, we have a fully formed delimiter in our hands) if the fully
formed delimiter we have is posDelimiter then we are in state of read-position, and
of it is a wordDelimiter then we are in the state of read-word. We then create the
entries of the Map to be used to construct the DocumentIndex instance as in Step 2.
of the 1.4.1.1 section.

1.4.3 CRUD for Collection Index data persistence in a data base

Since the actual structure used for document collection persistence is exactly the
same for both access modes (i.e. fast and simple) we present only one set of
algorithms.

1.4.3.1 Create a new Collection Index (document collection)

This is a very simple process that mostly relates existing document index records
with a collection.

 - START_TRANSACTION
 Step 1. Using the provided id create a new DOCUMENT_COLLECTION
record.
 Step 2. If the collection is not empty (i.e. it has actual indexed

documents) then for each document we check if this document
has been added to this collection.
For each WordSourceID instance in the
Collectionindex.allDocumentsIds we check if the document
has been related to this collection. This can be done by
querying for an entry in the
DOCUMENT_COLLECTION_DOCUMENT_XREF table that has the
DOCUMENT_ID of the current document index (as identified by
the hashCode() and the provided CollectionIndex.id). If the
entry exists then we do nothing but if it doesn’t exist then we
execute these steps:
Step 2a. We create a new

DOCUMENT_COLLECTION_DOCUMENT_XREF
record with the proper relating Ids.

 Step 2b. We update the document count for the document
index identified. This is simply done by reading
the current count for the Document Index (as
given by USE_COUNT) and then updating the
record with an increment of this count.

 - END_TRANSACTION

1.4.3.2 Read an existing collection index (document collection)

This is a relatively simple process that mostly delegates to document index-reading
routines.

 Step 1. We create an empty map to hold words and empty Set to hold
all the document Id WordSourceId instances.
 Map myMap = new HashMap();
 Set mySet = new HashSet();

 Step 2. For the given CollectionIndex.id we fetch all the
DOCUMENT_COLLECTION_DOCUMENT_XREF records matching

this id
in the COLLECTION_ID field.

 Step 3 For each such record we extract the DOCUMENT_ID and we
fetch the index document from persistence according to
either section 1.4.1.1 and section 1.4.2.1 if we
are doing this as part of fast access.
Step 3a. for the current document we walk through all the

indexed words.
For each word we add the word (after wrapping it
in CollationKey) to myMap as follows:
- If the word doesn’t exist in the map we add it
to the map (as the key) with the value being a
new HashSet() to which we add the current
document’s WordSourceId instance.
- if the word already exists we fetch the value
(which is a Set) and we add to this set the
current document’s WordSourceId instance. We
then re-insert the updated Set into myMap under
the original key.

 Step 3b. To mySet we add the current document’s
WordSourceId instance.

1.4.3.3 Update a collection index (document collection)

Updating a collection index is really a simple walkthrough the
DOCUMENT_COLLECTION_DOCUMENT_XREF table to see if

Step 1. Are there are any document index entries there that are not in
the input CollectionIndex object?. If this is so we need to
remove the document index from the
DOCUMENT_COLLECTION_DOCUMENT_XREF table and
additionally we need to decrement the USE_COUNT in the
DOCUMENT table for the specific document index.

 Step 2. Are there any document index entries in the CollectionIndex
object that are not in the
DOCUMENT_COLLECTION_DOCUMENT_XREF table? If so we

need to
add the proper relation record by creating a new
DOCUMENT_COLLECTION_DOCUMENT_XREF record with the
CollectionIndex.id and the document index’s id (given by
WordSourceId.hashCode()). We also need to increment the
USE_COUNT in the DOCUMENT table for the specific document
index.

 This should be done as part of a transaction.

1.4.3.4 Delete a collection index (document collection)

Deletion simply means that we remove all the
DOCUMENT_COLLECTION_DOCUMENT_XREF references to the COLLECTION_ID that
matches the current CollectionIndex.id. It also means the proper decrementing of
the appropriate DOCUMENT.USE_COUNT entries for the documents that were
contained in the collection. The final step is to remove the specific
DOCUMENT_COLLECTION record.

All of this should be done in a transaction.

1.4.4 CRUD for xml based persistence

1.4.4.1 Reading a document index

We will be using a SAX based parser for this.

 Step 1. For the given document index id (docId) we look for all files

that begin with the following name:
“doc_index_” + docId + “_”

 Every such file that we find will use (in sequence as specified in
the section 1.1.1.2.1.

 Step 2. For each file we do the following:
 - Since each file will contain the same document information

and will only differ in extended word and position content we
only read locale, className, sourceIdentity (this is base64
encoded so we will need to decode this element first using the
Base64 encoding algorithm is section 1.4.5.1 and then
deserialize the decoded stream), and delimiters from the first
file in the sequence.
- We read all the word and position information into an
appropriate Map as specified in the data base algorithms.

1.4.4.2 Deleting an indexed document

Here we will need to use DOM to update all the collections that the document
belongs to since it will no longer load. We will use SAX to quickly parse
document_usage.xml file to find out which collections the document being deleted
belongs to.

 Step 1. We need to find all the collections that this document index

belongs to. This is very simple. Look for a document-id
argument in a <document-usage> node.

 Step 2. For each collection id that we read that this document index
belongs to we open the appropriate collection file which we

simply
construct as follows:
 “doc_collection_” + collectionId + “.xml”

 and we create a DOM tree and we remove the specific node
(i.e. <document-id>)from the DOM and the we overwrite the
original file with the new DOM

 Step 3. We delete all the indexed document’s xml files (there could be
a couple of them so we might have to remove a couple files)

1.4.4.3 Creating a new indexed document

The only difficult think about persisting a new indexed document revolves around
how to split the file if the data is bigger than the prescribed size limit. Please note
that here we do not have to use any type of an xml specific parser as we can create
the document by simply packing a StringBuffer with proper xml tags. The only thing
to note here is how do we know when we need to split a file and start writing in a
new one. This is easily achieved by the following fashion.

 Step 1. Generate the header and all the non-word related tags and data

and place it into an output stream (buffered)
 Step 2. Use a temporary StringBuffer (tempBuffer) for word data.

Fill in this buffer with all the necessary data for the current
word.
- If (currentFileLength + tempBuffer()+length >= limit –
threshold) threshold is safety of perhaps 1000 chars so that we
can actually properly close the file, then we know that we have
to finish up this file and create a new file to write the rest of the
word data. If this is the case we write all the necessary closing
tags into the file and close the file. We then create a new file
with the same name by with an incremented sequence number
and go to step 1.
- If on the other hand we have not reached the limit we then
simply add the contents of the tempBuffer to the current output
stream and write it out (we also update the currentFileLength
with e the number of bytes that we have just written)

1.4.4.4 Creating a new Collection index

This is relatively simple and depends on properly coordinating the different document
index files. This can be created directly by using the appropriate tags from the xml
definition in section 1.1.1.2.. Please also consult the document index creation section
1.4.4.1, index deletion section 1.4.4.2, as well as the data base section of 1.4.3.1.
DOM will be used if we need to update the document usage information in the
document_usage.xml file.

1.4.4.5 Reading a collection index

This is quite straightforward and depends on properly coordinating the different
document index files. SAX parser should be utilized. Please consult the xml for
collections.

1.4.4.6 Updating a collection index

This is quite straightforward and depends on properly coordinating the different
document index files. DOM parser should be utilized for the collection and data-
usage xml files since we will be overwriting. Please consult the xml for collections
and for document usage.

1.4.4.7 Deleting a collection index

Please follow the general algorithm for the data base since the steps there will apply
to here as well. We use SAX to read information that will be needed for deletion.

1.4.5 Base46 Encoding algorithm

This algorithm is very simple, as we will rely on the TopCoder Base64 Codec
component to do the work of encoding and decoding for us.

1.4.5.1 The Base 64 encoding/decoding algorithm

To encode a byte stream into a base64 encoded string we do the following:

Step 1. Obtain a byte representation of an object. This step is done
through java serialization.

 Let us assume that the resulting byte data resides in
rawObjectBytes[].

 Step 2. To encode the stream we do the following:

 // create an encoder
 // we just have one long line of output using the standard

 // alphabet
 Base64Encoder encoder = new Base64Encoder(0

, null
, Base64Codec.STANDARD_ALPHABET)

 // set encode input
 encoder.setInput(rawObjectBytes);

 // get encoded bytes

// We create a buffer to hold the encoded data. Since we do
// not know the exact size but we know that roughly 1.3
// times will be needed we allocate 2*original string just
// in case.
byte[] encodedObjectBytes =

new byte[rawObjectBytes.length * 2];
 int encodedByteCount = encoder.deflate(encodedObjectBytes);

 // now the 0..encodedByteCount bytes hold our encoded data
 // to get the String representation we simply do the

// following
String encodedString = new String(encodedObjectBytes, “UTF-8”);

The reverse decoding process is quite simple and can be deduced from the code
above. One thing that the developer has to be aware of is any character set used in
representing the string. It should be safe to assume a UTF-8 encoding for both
base64 encoding and decoding as shown above.

1.5 Component Class Overview

1.5.1 Main classes and interfaces

1.5.1.1 com.topcoder.document.index.persistence.impl.db

This package will hold all the persistence aspect dealing with db-based persistence.

 AbstractDBIndexPersistence <<abstract>>

This is an abstraction of a typical data base driven persistence contract. This
provides for getting a connection from the DBConnectionFactory as well as
specifying transaction control. This hides nicely the intricacies of configuration
that would be used by all derived classes.

SimpleAccessDBIndexPersistence <<concrete>>
This is an implementation of the AbstractDBIndexPersistence that deals
with a simple and straightforward, normalized data based schema. This is

provided for a user who is not as concerned about speed of the execution but
is more concerned about simple data mining capabilities for 3rd party API.
Since all the data is in plain view (nothing except for a serialized BLOB java
object) this can be easily utilized.

FastAccessDBIndexPersistence <<concrete>>
This is an implementation of the AbstractDBIndexPersistence that deals
with a fast, CLOB based, normalized data based schema. This is provided for
a user how is concerned about speed of the execution. By storing all the word
and word position data in a single CLOB structure we are achieving a 4000%
speed increase over a comparable solution that uses thousands of records to
store words and related positions.

1.5.1.2 com.topcoder.document.index.persistence.impl.xml

This package will hold all the persistence aspect dealing with xml-based persistence.

XmlIndexPersistence<<concrete class>>
This is a concrete implementation of the IndexPersistence contract that
uses xml files as storage medium. This implementation uses a dual strategy
for parsing and utilized SAX parsing for reading data in and DOM parsing for
data updates (such as CollectionIndex updates and document use count
updates)
This implementation allows for creation of arbitrarily large document index
files by sequencing (splitting) large files into chunks of file based data. Since
it is required that binary data is stored in the xml files for document index a
serialized Base64 encoded data will be both encoded and decoded by this
implementation.

1.6 Component Exception Definitions
This design is fully dependent on the contracts specified in the Document Indexer 2.0
component and as such reuses its persistence based exceptions. But since we will be
dependent on configuration to instantiate the different persistence implementations
we will also create a PersistenceConfigurationException which will be derived
from the base IndexPersistenceException provided.

1.6.1 Custom Exceptions

1.6.1.1 Persistence related exceptions

 PersistenceConfigurationException
This is an exception that signals persistence configuration issues when
instantiating or initializing persistence instances. Ideally this exception should
go into the com.topcoder.document.index.persistence package but currently it
will be placed in the common com.topcoder.document.index.persistence.impl
package.

1.6.2 System and general java exceptions

IllegalArgumentException
This will be thrown in situations where the input is considered illegal (this
includes illegal null pointer input) . Some examples follow:

• Empty String (i.e. a string which after it is trimmed has a
length of 0)

1.7 Thread Safety

The current design doesn’t make the component thread-safe, Here are two points
about thread-safety for this component:

1.7.1 Thread-safety

There is no requirement to make this thread-safe, but we could argue that this
should be made thread safe. As far as persistence instances are concerned there are
no shared resources that are used internally within the instance itself. Thus for db
persistence a connection is never exposed and is created for each new persistence
request. The same idea goes with the xml persistence where SAX or DOM parser
instances are created on demand within the actual persistence call. Thus we can
argue that persistence acts almost like a utility.

In other words none of the current persistence implementations have a state that is
shared.

1.7.2 Race condition from external resources possible issues

If we look at the actual aspect of external resources (such as an xml file or a
database table) then we have a possibility of a race condition (akin a thread-safety)
this would call for an ACID based solution for DB and a file locking solution for xml
based persistence. It was deemed though after some though that since indexing (i.e.
writing) will be done usually from one source and group creation will be also
probably done from one source (again writing) and since this component’s main
purpose will be to read the indexed data from persistence we will not have to burden
the solution with involved process safety solutions and as such no process safety
solution has been implemented.

2. Environment Requirements

1.1 Environment

• Development language: Java1.4
• Compile target: Java1.4, Java1.5

1.2 TopCoder Software Components
1. DB Connection Factory Version 1.0

This will used to load up pre-configured connections.

2. Configuration Manager 2.1.4
This is being used indirectly for purposes of configuring Db Connection
factory component as well as for specific xml persistence configuration.

3. Document Indexer 2.0
This is actually the plug-in contract for this component and the
persistence defined here will plug into Document Indexer 2.0 component.

4. Base64 Codec 1.0

This is used for base 64 encoding and decoding process.

NOTE: The default location for TopCoder Software component jars
is../lib/tcs/COMPONENT_NAME/COMPONENT_VERSION relative to the
component installation. Setting the tcs_libdir property in
topcoder_global.properties will overwrite this default location

1.3 Third Party Components

None used.

3. Installation and Configuration

1.4 Package Name

com.topcoder.document.index.persistence.impl
com.topcoder.document.index.persistence.impl.db
com.topcoder.document.index.persistence.impl.xml

1.5 Configuration Parameters

Currently we need to configure the DB persistence entries as well as some specific
xml persistence information.

DB persistence implementation parameters:

Parameter Description Values
ConnectionName The name of the

connection to be used

Optional.

Any valid name will do. Will use
default connection if no name given.

ConnectionFactoryClassName This is the class name of
the connection factory

Optional

Example:
com.topcoder.db.connectionfactory.
DBConnectionFactoryImpl

ConnectionFactoryNamespace This is the namespace to
pass to the connection
factory.

Optional

Any valid namespace.

XML persistence implementation parameters:

Parameter Description Values
XmlPersistencePath This is the place where all the xml

files that make up the persistence
are stored for this session. This
must be a valid fully qualified path.

Required

Example: "c:\xmldata"

FileSizeLimit This is a file size limit for saving a
chunk of indexed data. It is
measured in Mbytes

Required

Example: 2000

This would represent a limit of 2 Gb,
which is a limit on a window file
system for example.

FileSizeThreshold This is a safety net size in Kbytes
that is applied before the
fileSizeLimit is reached.

Required

Example: 10

This would represent a safety net of
10 Kb to be applied before the size
limit is reached. In effect it subtracts
from the filesizeThreshold value.

1.6 Dependencies Configuration

None at this point.

4. Usage Notes

4.1 Required steps to test the component

• Extract the component distribution.
• Follow Dependencies Configuration.
• Execute ‘ant test’ within the directory that the distribution was extracted to.

4.2 Required steps to use the component

1. Configure the necessary connections.
2. Create the specific persistence instance passing to it the proper initialization

parameters and then pass this to an instance of IndexManager.
4.3 Demo
The demo will assume that specific sources for document indexing have been
properly and that the database has been properly administered and is running.

4.3.1 Manager based persistence usage

// Create a xml based persistence
IndexPersistence xmlPersistence = new XmlIndexPersistence("some.name.space");
// pass it to the manager
IndexManager manager = new IndexManager(xmlPersistence);
// Create a fast db based persistence
IndexPersistence fastDBPersistence =

new FastAccessDBIndexPersistence ("some.name.space");
// pass it to the manager
IndexManager manager = new IndexManager(fastDBPersistence);
// Create a simple db based persistence
IndexPersistence simpleDBPersistence =

new SimpleAccessDBIndexPersistence("some.name.space");
// pass it to the manager
IndexManager manager = new IndexManager(simpleDBPersistence);

4.3.2 Direct persistence operations (persistence interface usage demo)
// Use the API to do some specific persistence. Here we showcase the direct persistence
// API on standalone basis rather than through the index manager. We will use the
// xmlPersistence instance

// Create a xml based persistence
IndexPersistence xmlPersistence = new XmlIndexPersistence("some.name.space");
// add a document to the persistence
xmlPersistence.addDocumentIndex(documentIndex)
// get it back
DocumentIndex documentIndex =

xmlPersistence.getDocumentIndex(documentIndex.getWordSourceId());
// remove it
xmlPersistence.removeDocumentIndex(documentIndex.getWordSourceId());
// create a collection index
xmlPersistence.addCollectionIndex(collectionIndex)
// get some persisted collection index
CollectionIndex someDocumentCollection = xmlPersistence.getCollectionIndex("265727");
// remove it
xmlPersistence.removeCollectionIndex("265727")
// change something in the collection
someDocumentCollection.add(documentIndex);
// update it
xmlPersistence.updateCollectionIndex(collectionIndex)
// increase the usage count
xmlPersistence.increaseDocumentUseCount(wordSourceId)

// decrease the usage count
xmlPersistence.decreaseDocumentUseCount(wordSourceId)
// get the usage count
int persistedCount = persistence.getDocumentUseCount(wordSourceId);
// get all persisted docs
Set docs= xmlPersistence.getIndexedDocuments();

5. Future Enhancements
• None at this point

6. Appendix A – ERD diagrams
This appendix contains the two ERD diagrams for the data base solution.

7. Appendix B – sample benchmarks and source code
Here is some benchmark figures for fast data base access and the very simple code
that was used to obtain these figures.

The test was run with 5 documents with approximately 10000 word records per
document and 3 positions per word. The normal test has three tables, and the blob
just one. The test includes running the query and processing the resultset and data.
The test was repeated 100 times and the score averaged. The results are in
milliseconds:

Run# Simple Access Solution Blob based Solution
 Run time in ms Run time in ms

1: 2000 109
2: 1704 47
3: 1734 31
4: 1719 31
5: 1750 47
6: 2141 46

simple access average: 1714.32 ms
blob average: 39.56 ms
performance improvement factor: 43.33

7: 1750 31
8: 1656 125
9: 1656 47
10: 1734 47
11: 1656 47
12: 1750 31
13: 1734 47
14: 1656 47
15: 1766 31
16: 1656 31
17: 1734 47
18: 1671 47
19: 1766 31
20: 1657 47
21: 1766 31
22: 1672 31
23: 1734 32
24: 1656 32
25: 1766 31
26: 1672 47
27: 1750 31
28: 1641 47
29: 1765 31
30: 1672 31
31: 1750 32
32: 1657 46
33: 1750 31
34: 1656 31
35: 1781 47
36: 1656 47
37: 1750 47
38: 1656 47
39: 1750 47
40: 1703 31
41: 1781 31
42: 1656 31
43: 1750 46
44: 1641 47

Run# Simple Access Solution Blob based Solution
 Run time in ms Run time in ms

45: 1765 47
46: 1672 46
47: 1750 31
48: 1640 31
49: 1735 32
50: 1656 32
51: 1766 31
52: 1656 32
53: 1765 32
54: 1641 46
55: 1766 31
56: 1640 47
57: 1734 47
58: 1656 31
59: 1750 47
60: 1672 32
61: 1750 47
62: 1640 47
63: 1750 47
64: 1672 32
65: 1734 47
66: 1641 31
67: 1734 32
68: 1687 31
69: 1734 47
70: 1656 31
71: 1750 32
72: 1672 31
73: 1766 47
74: 1672 31
75: 1750 31
76: 1625 31
77: 1750 31
78: 1656 31
79: 1765 32
80: 1656 32
81: 1781 47
82: 1657 31
83: 1750 47
84: 1656 47
85: 1750 32
86: 1672 31
87: 1750 47
88: 1687 31
89: 1734 47
90: 1657 32
91: 1765 32
92: 1672 47
93: 1750 47
94: 1672 31
95: 1750 31
96: 1656 47
97: 1750 47
98: 1656 32
99: 1766 31
100: 1656 31

	Document Indexer Persistence Component Specification
	Design
	Anatomy of the proposed design
	Database considerations
	Proposed CLOB structure
	XML considerations
	How do we use all these files?

	Data base diagram, ERD, and DDL
	Fast Solution
	XML diagram and XSD schema

	Design Patterns
	Industry Standards
	Required Algorithms
	CRUD for Document index data from simple access database
	Reading a document index
	Deleting an indexed document
	Creating a new document
	Update a document index

	CRUD for Document index data from fast access database
	Creating CLOB word data
	Reading word data out of a CLOB

	CRUD for Collection Index data persistence in a data base
	Create a new Collection Index (document collection)
	Read an existing collection index (document collection)
	Update a collection index (document collection)
	Delete a collection index (document collection)

	CRUD for xml based persistence
	Reading a document index
	Deleting an indexed document
	Creating a new indexed document
	Creating a new Collection index
	Reading a collection index
	Updating a collection index
	Deleting a collection index

	Base46 Encoding algorithm
	The Base 64 encoding/decoding algorithm

	Component Class Overview
	Main classes and interfaces
	com.topcoder.document.index.persistence.impl.db
	com.topcoder.document.index.persistence.impl.xml

	Component Exception Definitions
	Custom Exceptions
	Persistence related exceptions

	System and general java exceptions

	Thread Safety
	Thread-safety
	Race condition from external resources possible issues

	Environment Requirements
	Environment
	TopCoder Software Components
	Third Party Components
	None used.

	Installation and Configuration
	Package Name
	Configuration Parameters
	Dependencies Configuration

	Usage Notes
	Required steps to test the component
	Required steps to use the component
	Demo
	Manager based persistence usage
	Direct persistence operations (persistence interface usage d

	Future Enhancements
	Appendix A – ERD diagrams
	Appendix B – sample benchmarks and source code

