
Document Indexer Persistence 1.0 Component Specification

1. Design
The Document Indexer Persistence component implements the persistence layer
as required by the Document Indexer component. The pluggable framework
allows different persistence mechanisms to be used. For the initial version, two
mechanisms (XML and database) are provided.

This component will implement interfaces defined by the Document Indexer
component to persist the necessary document index data. Developers should
familiarize themselves with the overall design and API of that component.

Database persistence is straightforward; there is an ERD and a SQL file for
creating the database in the “docs” folder. Each document is a single entry in the
Document table. Each word in the document is an entry in the Word table. Each
word only appears in the Word table once, but it could be included in multiple
documents. The Location table holds values where each word can be found in
each document. The user has the option of using a transaction when updating
either index, through each class’ AutoCommit property. If AutoCommit is false,
a transaction will be used, committed using the Save method of each class.

XML persistence involves reading and writing XML files according to the
schemas found in the “docs” folder. The only twist is that the user has the option
of splitting out the XML for a document index into multiple files. This allows the
user to get around file system size limits for particularly large documents.

1.1 Design Patterns
The strategy pattern is implemented by a combination of this design and the
Document Indexer design. The IDocumentIndexSource interface and
ICollectionIndexSource can be referenced generically, independent of whether
they are an XML or DB based implementation.

1.2 Industry Standards
XML
SQL

1.3 Required Algorithms

Empty string:

An empty string is defined, in this component, as any string that is all white space,
or is an empty string. That is, MyString.Trim().Equals(string.Empty);

The index implementations follow the example in the Document Indexer class,
where the collection index has an IDictionary of indices, referenced by name, and
the document index has an IDictionary of word locations, referenced by word
string. These collections are loaded and saved using the Load and Save

XML Collection index

The collection index schema is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:topcoderprog="http://www.topcoder.com"
targetNamespace="http://www.topcoder.com">
 <xs:element name="Documents" type="topcoder:Documents"/>

 <xs:complexType name="Document">
 <xs:sequence>
 <xs:element name="Name" type="xs:string"/>
 <xs:element name="FilePath" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

We don’t keep track of assembly names and classes for each document, since we
only support creating XmlDocumentIndexSource implementations from the
XmlCollectionIndexSource.

Loading Steps:

1. Create a new XmlDocument, loaded with the data from the file path given
2. Get the Documents node from the file
3. For each Document node in the Documents node

a. Get the name of the document index
b. Get the file path of the document index
c. Create a new SimpleIndexParameters instance with the file path
d. Create a new IndexInfo with the assembly name and class name of

XmlDocumentIndexSource, and the SimpleIndexParameters instance
created

e. Add the IndexInfo to the indices IDictionary, with the document name
as the key

Saving Steps:

1. Create a new XmlDocument
2. Add a Documents node to the root XmlDocument
3. For each document index in the indices collection

a. Create a new Document node
b. Create the FilePath and Name nodes and append them to the Document

node
c. Append the Document node to the Documents node

4. Save the Xml to the file pointed at by the file path.

XML Document Index

The document index schema is as follows:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:hermesprog="http://www.topcoder.com"
targetNamespace="http://www.topcoder.com">
 <xs:element name="Document" type="topcoder:Document"/>
 <xs:complexType name="Document">
 <xs:sequence>
 <xs:element name="CompareOptions" type="xs:string"/>
 <xs:element name="Culture" type="xs:string"/>
 <xs:element name="Words" type="topcoder:Words"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="Words">
 <xs:sequence>
 <xs:element name="Name" type="xs:string"/>
 <xs:element name="Words" type="topcoder:Words" minOccurs="0"/>
 <xs:element name="Files" type="topcoder:Files" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="Files">
 <xs:sequence maxOccurs="unbounded">
 <xs:element name="FilePath" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="Words">
 <xs:sequence maxOccurs="unbounded">
 <xs:element name="Word" type="xs:string"/>
 <xs:element name="Locations" type="topcoder:Locations"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="Locations">
 <xs:sequence maxOccurs="unbounded">
 <xs:element name="Location" type="xs:numeric"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

It optionally can reference files in the following form:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:hermesprog="http://www.topcoder.com"
targetNamespace="http://www.topcoder.com">
 <xs:element name="Words" type="topcoder:Words"/>
 <xs:complexType name="Words">
 <xs:sequence>
 <xs:element name="Word" type="topcoder:Word"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="Word">
 <xs:sequence maxOccurs="unbounded">
 <xs:element name="Word" type="xs:string"/>
 <xs:element name="Locations" type="topcoder:Locations"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="Locations">
 <xs:sequence maxOccurs="unbounded">
 <xs:element name="Location" type="xs:numeric"/>

 </xs:sequence>
 </xs:complexType>
</xs:schema>

The second schema is used if the user has selected the option of saving a
document index to multiple files. The second file has all words and locations for
a number of words, with the actual number dependent on the number of total
words and number of files they are split over.. The XmlDocumentIndexSource
class has a SaveWordsToFile method that takes a collection of words given to it
and saves them to a file in the Words schema above.

When saving to multiple files, we split the words into as many sub-files as
requested by the user to create, and then we create a new XML document for each
group of words. The group size is easily calculated by just getting the number of
total words, and dividing it by the number of files to create, rounding up to the
nearest integer. These files should be named with the name of the file we are
saving to, appended with a GUID. So saving to Document.xml would result in
the file Document.xml being created, along with Document(some GUID).xml,
Document(some GUID).xml etc…

Loading Steps (single file):

1. Create a new XmlDocument, loaded with the data from the file path given
2. Get the Words node from the file
3. For each Word node in the Letters node

a. Insert the word and locations into the words IDictionary

Loading Steps (multiple files):

4. Create a new XmlDocument, loaded with the data from the file path given
5. Get the Files node from the file
6. For each FilePath node in the Letters node

a. Load the words in the file, using the GetWordsFromFile method.

Saving Steps (single file):

1. Create a new XmlDocument
2. Add the CultureInfo and CompareOptions nodes
3. Add a Words node to the root XmlDocument
4. For each word

a. Create a new “Word” node for each word and the locations of that word in
the document index

b. Add the word node as a child of the Words node
5. Save the Xml to the file pointed at by the file path.

Saving Steps (multiple files):

1. Create a new XmlDocument
2. Add the CultureInfo and CompareOptions nodes
3.
4. Add a Files node to the root XmlDocument
5. For each group of words

a. Get the group of words from the words IDictionary
b. Save them to a file using the “SaveWordsToFile” method
c. Create a FilePath node pointing to the file where the words were saved
d. Append the FilePath node to the Files node

6. Save the Xml to the file pointed at by the file path.

Database Collection Index:

Each document is a different entry in the Document table, with an auto-assigned
ID. The Location table holds the mapping between entries in the Word table and
entries in the Document table. The Word table only holds unique words, to cut
down on space used by the system.

All SQL statements should be done using parameterized SQL to help with
efficiency.

Both the DB classes work directly with the database for adding, removing,
clearing, loading and saving. They do keep references to indices and words, but
when calling Add, Remove, Clear, Load, or Save, those operations are DB
dependent.

Adding a document index to the collection (DBCollectionIndexSource.Add):

 INSERT INTO Document(document_name)

 VALUES(@documentName)

Removing a document index from the collection
(DBCollectionIndexSource.Remove):

 DELETE FROM Document

 WHERE document_name=@documentName

Clearing the collection (DBCollectionIndexSource.Clear()):

 TRUNCATE TABLE Document

 TRUNCATE TABLE Word

 TRUNCATE TABLE Location

Loading all document indexes in a collection
(DBCollectionIndexSource.Load):

 SELECT document_id, compare_options, culture, document_name FROM Document

For each record returned, create a new DBDocumentIndexParameters instance
with the connection type, string, auto-commit and document_id from the
database

Create a new IndexInfo with each DBDocumentIndexParameters and add it to
the indices Dictionary with the document_name from the database.

Loading all words for a document index from the database
(DBDocumentIndexSource.Load):

 SELECT location, location_id, document_id, word_id FROM Location
 INNER JOIN Word ON Location.word_id=Word.word_id
 WHERE document_id=@documentID

For each record returned, find the word value in the words IDictionary,
if it exists, and add the location found to the IList value. If the word
doesn’t exist in the words IDictionary, create a new ArrayList with the
location of the record and add the key and value to the words collection

 Removing a Word from the database (DBDocumentIndexSource.Remove):

 First, get the word_id from the database.

 SELECT word_id from Word where word=@word

 Then, delete all Location rows with the same document_id and word_id.

DELETE FROM Location
 WHERE document_id=@documentID and word_id=@wordID

Clearing Words from the database for a given document
(DBDocumentIndexSource.Clear):

DELETE FROM Location WHERE document_id=@documentID

 Adding a Word to the database (DBDocumentIndexSource.Add):

 First, check if the word exists in the Word table

SELECT word, word_id FROM Word WHERE word =@word

 Then, insert the word if it doesn’t exist.

 INSERT INTO Word(word) VALUES(@word)

 Next, insert a Location record for the location of the word

 INSERT INTO Location(

 word_id,

 document_id,

 location)

 VALUES(

 @wordID,

 @documentID,

 @location)

1.4 Component Class Overview

XmlDocumentIndexSource:
This class is an Xml based implementation of IDocumentIndexSource. It saves to
and loads from one or more Xml files, depending on a limit defined by the user.
Besides just the standard saving to an XML file, this class also provides the
option to split the saving of the document index to multiple XML files, all linked
from the main file. This provides us with a way to split the output file into any
number of different files. This allows us a way to get around file system size
limits on a single file. This class is thread safe, as the access to the words
dictionary is synchronized.

XmlCollectionIndexSource:
This class implements the ICollectionIndexSource to provide the sources in an
Xml document. This implementation saves and parses files according to the
Documents.xsd file in the docs directory. This class provides functionality for
getting information about a particular document, as well as saving back out all
documents in the collection. The indices member variable in this class is mutable,
but access to it is synchronized, leading to a thread safe implementation

DBDocumentIndexSource:
This class implements the IDocumentIndexSource in a database related manner.
The saving and loading is all done to a database, based on connection parameters
given. This class has the additional option to auto commit changes directly to the
database, or use a transaction to queue up changes and then commit them all at
once. This class is mutable and is not thread safe.

DBPersistenceParameters:
This class contains parameters that are used to initialize a
DBCollectionIndexSource class. Contained are properties for connection type
and connection string, which are used to get a connection from the Connection
Factory. The AutoCommit property is used to tell the DBCollectionIndexSource
whether or not each update goes directly to the database or whether it is added to
a transaction to be committed later. This class is immutable and is thread safe.

DBDocumentIndexParameters:
This class extends the DBPersistenceParameters class to provide an extra
DocumentID property as a supplement to the properties contained by its parent
class. This class is immutable and is thread safe.

DBCollectionIndexSource:
This class provides a DB specific implementation of the ICollectionIndexSource
interface. It holds properties for connection parameters, either passed in or loaded
from the configuration manager. It only works with the Document table in the
database, for loading in document indices. This class is mutable.

1.5 Component Exception Definitions
DBPersistenceConfigurationException:
This exception is thrown by both the DB implementations in this package if a
given namespace doesn't contain the necessary information to load in all
configuration values for each class.

1.6 Thread Safety
This component is not 100% thread safe. The XML persistence mechanism
synchronizes its collections and is thread safe. The only two places in this part to
worry about are the words and indices collection, and access to them is
synchronized, providing thread safety.

The DB persistence is not thread safe. The collections are not synchronized, but
even if they were, the inherent thread instability of the database operations would
still cause these particular classes to be non-thread safe. Each class contains a
single connection that is opened and closed, but multiple methods in each class
use data readers to retrieve data from the database, and since only one data reader
can be open at a time on any given connection, it is infeasible to make this layer
thread safe. Too much locking on the connection would cause efficiency to be
adversely affected.

2. Environment Requirements
2.1 Environment

• C# .NET 1.1
• Informix database
• Informix ODBC drivers --

http://www.dotnet247.com/247reference/msgs/13/68131.aspx

2.2 TopCoder Software Components
• Document Indexer 1.0: This component provides new persistence

functionality for the Document Indexer component.

• Configuration Manager 2.0: The DB persistence layer loads connection
information from the configuration manager.

• Connection Factory 1.0: The DB persistence layer loads in connection
information from the Connection Factory based on configuration parameters.

NOTE: The default location for TopCoder Software component jars
is../lib/tcs/COMPONENT_NAME/COMPONENT_VERSION relative to the
component installation. Setting the tcs_libdir property in
topcoder_global.properties will overwrite this default location.

3. Installation and Configuration
3.1 Package Name

TopCoder.Document.Index.Persistence.DB
TopCoder.Document.Index.Persistence.Xml

3.2 Configuration Parameters
 Parameter Description Values

DBConnectionName The name of the connection to get
from the Connection Factory
component

Any valid connection
name

DocumentID
(DBDocumentIndexSource
only)

The ID of the document in the
database to load words for

Any valid
document_id value in
the database

4. Usage Notes
4.1 Required steps to test the component

• Extract the component distribution.

• Follow Dependencies Configuration.

• Execute ‘nant test’ within the directory that the distribution was extracted to.

4.2 Required steps to use the component

4.3 Demo
XML:

//Load from an XML file
ICollectionIndexSource xmlSource=new XmlCollectionIndexSource();
IParameters parameters=new SimpleIndexParameters(“C:\\collection.xml”);
xmlSource.Load(parameters);

//Enumerate through the indices
IDictionaryEnumerator enumerator=xmlSource.GetEnumerator();

while(enumerator.MoveNext())
{

do something with each IndexInfo…
}

//Add a new index
IParameters documentParams=new SimpleIndexParameters(“C:\\document.xml”);
IndexInfo info=new IndexInfo(“TopCoder.Document.Index.Persistence.Xml”,
“XmlDocumentIndexSource”, documentParams);

xmlSource.Add(“Document”, info);

//Save the changes
xmlSource.Save();

//Remove the index
xmlSource.Remove(“Document”);

//Get an index
IndexInfo retrieved=xmlSource[“Document2”];

//Clear all indices
xmlSource.Clear();

//Save the changes
xmlSource.Save();

//Create a new XmlDocumentIndexSource
IDocumentIndexSource source=new XmlDocumentIndexSource();
source.Load(documentParams);

//Add a new word
WordInfo word=new WordInfo(“Cat”, 102);
source.Add(word);

//Remove a word
source.Remove(“Dog”);

//Save the changes
source.Save();

//Save to multiple files
source.NumberOfSubFiles=2;
source.Save();

//Check if the document contains a word
if(source.Contains(“Snake”))
{

Console.Writeline(“Snake exists, eeeek!”);
}

 //Clear all words
 source.Clear();

 //Set a new file path
 source.FilePath=”C:\\Empty.xml”;

 //Save the empty file
 source.Save();

Database:

//Load from a database
ICollectionIndexSource dbSource=new DBCollectionIndexSource();
IParameters parameters=new DBPersistenceParameters(“odbc”,
“Database=source; Server=test-server”, false);

dbSource.Load(parameters);

//Enumerate through the indices
IDictionaryEnumerator enumerator=dbSource.GetEnumerator();

while(enumerator.MoveNext())

{
do something with each IndexInfo…

}

//Add a new index
IParameters documentParams=new DBDocumentIndexParams(“odbc”,
“Database=source; Server=test-server”, false, 8);

IndexInfo info=new IndexInfo(“TopCoder.Document.Index.Persistence.DB”,
“DBDocumentIndexSource”, documentParams);

dbSource.Add(“Document”, info);

//Save the changes
dbSource.Save();

dbSource.AutoCommit=true;
//Remove the index
dbSource.Remove(“Document”);

//Get an index
IndexInfo retrieved=dbSource[“Document2”];

//Clear all indices
dbSource.Clear();

//No need to commit the changes, they have already been auto committed,
//calling “Save()” is unnecessary.

//Create a new DBDocumentIndexSource
IDocumentIndexSource source=new DBDocumentIndexSource();
source.Load(documentParams);

//Add a new word
WordInfo word=new WordInfo(“Cat”, 102);
source.Add(word);

//Remove a word
source.Remove(“Dog”);

//Save the changes
source.Save();

//Set auto commit to true
source.AutoCommit=true;

//Get a specific word’s locations
IList locations=source[“Horse”];

//Check if the document contains a word
if(source.Contains(“Snake”))
{

Console.Writeline(“Snake exists, eeeek!”);
}

 //Clear all words
 source.Clear();

5. Future Enhancements
The loading of parameters and classes could be made more extensible, but this
will require changes to the IParameters interface. More database implementations
could be supported. The ability to change the save location of each individual sub
file for Xml persistence to multiple files could be useful.

	Document Indexer Persistence 1.0 Component Specification
	Design
	Design Patterns
	Industry Standards
	Required Algorithms
	Component Class Overview
	Component Exception Definitions
	Thread Safety

	Environment Requirements
	Environment
	TopCoder Software Components

	Installation and Configuration
	Package Name
	Configuration Parameters

	Usage Notes
	Required steps to test the component
	Required steps to use the component
	Demo

	Future Enhancements

