
BreadCrumb Trail Tag v2.0 Component Specification

1. Design
Today’s websites have complex navigation rules. As a user navigates through a
website, it is very easy to become disoriented. A breadcrumb trail provides links
following the path of the user. This component provides an easily customizable
tag to provide breadcrumb functionality to a website. The look and feel of the tag
is set using CSS style sheets.

While simple web pages can assume the ownership of the whole screen, a portlet
application running under a portal environment can only render to an assigned
section of the screen. The new version of this component will be enhanced to
support such clustered environments.

In addition to the above, the tag can be used to dynamically adjust the included
site map based on the usage patterns:

1. Query strings are now included in both the node matching (the site map
XML document includes full regex matching capabilities in identifying
the nodes) and generated trails.

2. The last query string for each node in the current path will be
‘remembered’ and rendered back into the trail – regardless of how the site
map has been setup.

3. If a page has not explicitly been specified in the site map, it will
automatically be appended to the end of the current trail.

This enhancement has separated the logic in this component into 3 basic areas:

1. The current node discovery process. This process provides the component
with different ways to discover what the current node is. Two
implementations of this have been included:

a. An inline text tag where the body of the tag can be specified by the
application (in order to hardcode the url of the page).

b. An http servlet implementation that will interrogate the http servlet
for the url.

2. The path discovery process. The prior breadcrumb parser has been

replaced with a path discovery process that will attempt to discover the
path from the current node (as identified above) and the root node. Two
implementations of this have been included:

a. A dynamic path discovery that will use the XML site map as a
base and then include dynamic capabilities (as described above) on
top of it.

b. A static path discovery process that will mimic the behavior of the
v1.0 component (with the exception that regex patterns can be
specified also).

3. The node formatting process. The node formatting process allows the type
of node rendering for the trail to be fully pluggable for the environment
needed. This component provides 3 implementations of this:

a. A WebLogic netui anchor implementation, which utilizes the netui
anchors included in WebLogic, for proper portal url generation.

b. A WebSphere urlGeneration anchor implementation that utilizes
the included urlGeneration included with WebSphere for proper
portal url generation.

c. A simple html anchor implementation to generate html anchors.

The application can specify this as tags in the body of the bread crumb
trail tag.

Please note that this is almost a complete rewrite of the V1.0 component and the
class diagrams have not been marked up to reflect what has changed because
everything has essentially changed. The classes that did change have, in the class
doc, a listing of the items that have changed and the documentation of individual
elements will have implementation notes of what has changed. Please note that
the zuml file has been resync’d with the implementation, the newest standards
applied and all documentation corrected.

1.1 Design Patterns
Strategy Pattern – is used extensively in this application to provide various
implementations of functionality that can easily be swapped

Iterator Pattern – is used by the BreadCrumbTrailTag to iteratively evaluate the
body of the tag

1.2 Industry Standards

XML, JSP specification 1.1, JSP tag libraries

1.3 Change List

Existing source files:
• Updated the tld, xml and xsd files to reflect new tags and xml

requirements
• BreadCrumbParser – eliminated
• BreadCrumbParserException – eliminated
• BreadCrumbNode

1. Eliminated the parent url (variable, constructor and setters
2. Eliminated all setter methods (class is immutable now)
3. Updated all NullPointerExceptions (NPEs) to

IllegalArgumentExceptions (IAEs).
4. Eliminated all synchronization
5. Updated all documentation in zuml.

• BreadCrumbException
1. Changed constructors to be public
2. Added 2nd constructor (message, throwable)
3. Updated all documentation in zuml.

• BreadCrumbException
1. This class now inherits from BodyTagSupport
2. Updated all documentation in zuml.
3. Changed all NullPointerExceptions to IllegalArgumentException

and changed all string setters to save a null when it's an empty
string

4. Eliminated the SITE_MAP_ATTRIBUTE_NAME
5. Eliminated dataSource and associated getter/setter
6. Eliminated siteDataSource and associated getter/setter
7. Eliminated parserClassName and associated getter/setter
8. Eliminated the private variable out
9. Eliminated the parseSiteDataSource private method
10. Eliminated the printCurrentRootNode private method
11. Eliminated the printCurrentNode private method
12. Eliminated the printRootNode private method
13. Eliminated the printNode private method
14. Eliminated the printN private method
15. Added, documented and added out argument to printStyleSettings

private method
16. Added, documented and added out argument to printStyle private

method
17. Added, documented and added out argument to printSeparator

method
18. Added, documented and added out argument to

getSilentErrors/setSilentErrors method
19. Added constructor
20. Changed doStartTag fully
21. Added doInitBody method
22. Added doAfterBody method
23. Added doEndTag method
24. Added iterator private variables
25. Added title private variable and associated getter/setter methods
26. Added pathOverride private variable and associated getter/setter

All other classes shown in the class diagram(s) are new classes to this design.

1.4 Tags and their parameters:
Please see bread_crumb_trail_tag_2.0.tld for more details

1.4.1 “breadCrumbTrail” tag

The breadcrumb trail tag can have most of its attributes defined in a configuration
file for easy assigning of common attributes (see the configurable column). This
tag has the following attributes assignable to the tag:

Attribute Description Required Configurable
pathSeparator The characters to use to

separate nodes in the path
No Yes

pathSeparatorStyle The CSS style of the separator No Yes
nodeStyle The CSS style of the non-root

and non-current nodes
No Yes

rootNodeStyle The CSS style of the root node No Yes
currentNodeStyle The CSS style of the current

node
No Yes

mouseOverStyle The CSS style when the mouse
hovers over any node

No Yes

silentErrors Whether exceptions should
silently be ignored

No Yes

pathDirection The direction of the trail No Yes
pathOverride A hardcoded path that

overrides normal processing
No No

title The title of the current page No No

The breadcrumb trail tag also supports a body that can be used (when the node
formatter is not specified in the object factory component) to specify the
formatting of each node. The templateNodeFormatter or htmlAnchor tags can be
used. Additionally, the following scripting variables are defined and can be used
when the user specifies simple text in the body:

Variable Name Type Description
breadCrumbFormatNode BreadCrumbNode The current node being

formatted
breadCrumbFormatStyle String The current CSS style to use

1.4.2 “templateNodeFormatter” tag
This tag will format an anchor based on a template file (such as websphere.jsp or
weblogic.jsp). The tag will define the current node to format and the current
formatting style as request attributes:

Name* Type
breadCrumbFormatNode BreadCrumbNode
breadCrumbFormatStyleClass String
* the names are from the BreadCrumbTrailTag constants

The specified template file is then included into the output stream.

This tag has the following attributes assignable to the tag:
Attribute Description Required Configurable
template The name of the template JSP

that will be used to generate
the anchor.

No Yes – via
Object
Factory

1.4.3 “htmlAnchor” tag
This tag can be used in the body of the “breadCrumbTrail” to format a simply
html anchor. There are no attributes assignable to this tag:

1.4.4 “httpServlet” tag
This tag can be defined before the “breadCrumbTrail” to define the current node
based on the requestURI/query string from the HttpServlet.

This tag has the following attributes assignable to the tag:
Attribute Description Required Configurable
title The page title to assign to this

page
No No

1.4.5 “inlinenode” tag
This tag can be defined before the “breadCrumbTrail” to define the current node
based on the hard coded text within the body of this tag.

This tag has the following attributes assignable to the tag:
Attribute Description Required Configurable
title The page title to assign to this

page
No No

The body of this tag must be specified and will be used as the URL for the page
(allowing the application programmer to override the url to a specific value).

1.5 Required Algorithms

1.5.1 The template

This component will render the following template:

 <style>
 path-separator-style { style string }
 node-style { style string }
 current-node-style { style string }
 root-node-style { style string }

 </style>
 ** The pluggable node formatting **

The various style(s), shown above, will only be included if the corresponding
variable is non-null (i.e. if the ‘nodeStyle’ variable is null, the ‘node-style’ line
above will not be included). The “pluggable node formatting” will be where the
node formatting results are put. Please note that the whole “” tag will not
be included if there is no style information (i.e. all the style variables are null).

1.5.2 Query Strings
The old component ignored the query string portion of the Url. This version will
handle query strings in the node discovery, the path discovery and in the node
formatting.

The node discovery will simply create the node with a url that has the query string
appended to it (i.e. “www.topcoder.com?id=1”).

The path discovery will can then use the query string portion as part of the
matching (in other words, the regex used to match nodes can include patterns on
the query string). The developer should note that if query strings are used in the
site, the site map must include query string matching in the xml file (or a “.*”
regex pattern on the end of the url to match all query strings for that url). Please
also note that differing query strings (on the same url) will create different nodes
on the trail if the node is a dynamic node (i.e. doesn’t match any of the regex
pattern).

The node formatter will then include the query string as part of the links that are
rendered.

1.5.3 Overall process
The overall process that the BreadCrumbTrailTag will follow is:

1. Determine the current node.
2. Determine the current path to the root.
3. Write out the header and styles.
4. Write out the node formatting for each node in the path.
5. Write out the ending tags.

Steps 1-3 are carried out in the doStartTag method of the class. Step 4 in the
doInitBody/doAfterBody tags (i.e. letting the body process them). Step 5 will
occur in the doEndTag method.

1.5.3.1 Determining the current node
The current node is determined in the following way:

1. Is a BREADCRUMB_CURRENT_NODE attribute already
defined? If the user specified one of the node defining tags before
the breadcrumb trail tag, it will have defined the node in the page
scope variable BREADCRUMB_CURRENT_NODE.

2. If found, simply use that node and go to step 2 in the overall
process.

3. Using the object factory, create the default NodeDiscovery class
and call getCurrentNode.

4. Use the node returned and go to step 2 in the overall process
5. If an exception occurs or the node is null, we either throw and

exception or simply return SKIP_BODY (if we are suppressing
errors).

1.5.3.2 Determining the current path to the root
We determine the current path to the root node by calling a PathDiscovery
implementation with the current node (defined in 1.5.2.1):

1. Using the object factory, create the default PathDiscovery class
2. Call getPath with the current node
3. If a path is returned, skip back to step 3 of the overall process
4. If the path is null, simply return SKIP_BODY (couldn’t find a path)
5. If an exception is thrown, either throw the exception or return

SKIP_BODY (if we are suppressing errors).

1.5.3.3 Writing out the header and styles
Writing out the header (“span”) and the styles will only occur if there are styles
specified (i.e. they are all non-null).

1.5.3.4 Writing out the node formatting
This is where things get interesting for the trail tag. There are two ways of
processing the path – backwards and forwards. A list iterator will be created
either at the 0th index position (processing root to current) or at the size-1 position
(processing current to root). The processing will then either run forwards or
backwards on the iterator.

The actual formatting will occur in the body of the tag. The process then does the
following:

1. Jsp Engine calls doInitBody method
2. doInitBody will take (from the iterator in the correct direction) the

next/previous node and style. The method will then put them into the
attribute map under specific names. The names have been defined as
variables in the TagExtraInfo class and will be available to the nested
tags or nested text.

3. Jsp Engine calls the body processing
4. Jsp Engine calls the doAfterBody method

5. doAfterBody will then read in the formatting that occurred in the body,
write it out to the JspWriter and clear the body (in preparation for the
next processing).

6. If there is another node in the iterator to be processed, it returns
EVAL_BODY_AGAIN

7. If there is no other node in the iterator, SKIP_BODY is returned
By doing this process, the doInitBody advances the iterator through the nodes and
makes those nodes/styles available to the body. The doAfterBody is then
responsible for writing out the results and determining if any nodes are left.

1.5.3.5 Writing out the ending tags
This logic appears in the doEndTag method and simply writes out the closing
html tag for the span.

1.5.4 Dynamic Path Discovery
The dynamic path discovery is really the heart of this component. The class will
attempt to discover the path of the current node to the root using a combination of
a ‘learned’ path and a static site map (see 1.5.4 for information about the static
site map).

Both of those variables are kept in session variables that will be reused every time
the class is called for a path.

The site map is simply a mapping of NodeMatcher (key) object to a List (value)
of NodeMatcher objects. The key is considered the parent of all the objects in the
list (the children). Note: the developer is free to also create a reverse mapping
(child to all parents) if it will help their implementation. The only restriction the
developer has (in assigning new state variables) is to define a public static
variable for that state information (like CURRENT_REVERSE_SITEMAP).

The current path is the path the class has ‘learned’ so far. Each element of the
path is of NodePair type and contains the actual node (including any contextual
information [like the query string]) and the NodeMatcher that the node matched
(which will be used to access the site map).

The rules that we will be following for generating a path is:

1. If the current node matches any of the nodes on the current path (as
defined by the node matcher), we take the path from the current root to
the current node – discarding all nodes after that one.

2. If current node matches no nodes in the site map, it’s considered a
‘new’ node that is linked from the last site. In other words, we
append the node to the current path (if there is one, if not – we simply
return null because we don’t know the path).

3. Otherwise, we perform a shortest path search on the site map to a root
and then try to match it up with as much of the current path as
possible.

The underlying NodeMatcher for this implementation will be a regex matcher
(which will be fairly slow on large sites). Because of that, we perform two quick
checks that cover two common situations:
1. We iterate the current path backwards and see if the node matches the

NodeMatcher for any element. If the element has a null matcher, compare the
node’s URL directly to determine if it matches. If a match is made and it is
not the last NodePair on the chain, a new NodePair is generated using the
current node and the node matcher (effectively discarding the old node’s
contextual information) and then discard all elements past the matching node.
A new path from root to that node is returned. This will cover the situations
where the user clicked on the trail (which should match somewhere on the
trail) or pressed the back button (which should match the last node).

2. We take the last element in the path and see if the current node matches any of

the children of that node. If it does, we simply append a new NodePair to the
end of the path and return the new path. This covers the situation where they
went to a place that is well defined (in the site map).

3. Failing those two – we will do a shortest path search on the sitemap for any

NodeMatcher that matches the node. Example:
We may iterate the sitemap and find 3 potential candidates (i.e. the current
node matched 3 NodeMatcher keys in the site map). We then iterate all
the parents of those 3 nodes (this is where a reverse site map may come in
handy!). If any of those parents have no parents, then we have found a
shortest path to a root node. If they all have parents, we then recursively
search the parents of the parents until we have found a root node (or more
than one). Note: the developer is free to implement whatever shortest path
algorithm they choose – as long as it correctly identifies the shortest path
(or paths if there are more than one).

4. We then take the shortest path(s) and try to determine which one has the most
commonality with the current path starting with the root node forward.
Example:

Let’s say our current path is A->B->C->D->E
Let’s say we found to paths to our current page M:

A->B->L->M
A->B->C->M

Because “A->B->C->M” had the 3 nodes in common with our current
path, we choose that path. If we have more than one with the same
commonality, choose the first one (where ‘first’ can be defined anyway
you choose).

5. Calculate the new path, save it and return it.

6. If the no shortest path is found for the node and we have a current path, we

assume this is a new ‘dynamic’ link and simply append the node onto the end
of the current path.

7. If no shortest path was found for the node and we have no current path (i.e.

the user probably went to this page directly and it’s not listed in the site map),
return null indicating we have no idea what the path is.

1.5.5 XML Path Discovery
The Xml Path Discovery object has two functions, it can be used as a static map
path discovery (i.e. not dynamic capable) and it can serve as a source for the static
site information to other PathDiscovery implementations (like the Dynamic Path
Discovery). The processing of the file is really no different than the old
BreadCrumbParser did (and the developer should roughly follow that). There are
only a few real differences:

1. There is now a pattern attribute in the XML file that must be read
2. The loading should create RegexNodeMatchers rather than

BreadCrumbNodes
3. The parent-child relationship is encoding in the sitemap itself. The

sitemap is a map of parent nodes to child nodes where ‘node’ is
defined as a RegexNodeMatcher.

Every node found in the Xml document should appear as a key in the site map
with a value of a List. That list will then hold references to any children that node
may have (or be empty if it’s a leaf node).

Let’s take an example file:
 <bc_node title="MyMain" url="/" pattern="/">
 <bc_node title="Forums" url="/forums" pattern="/forums">
 <bc_node title="Help" url="/forums" pattern="/forums?id.*"/>
 </bc_node>
 <bc_node title="Topics" url="/topics" pattern="/topics"/>
 </bc_node>

 <bc_node title="AltMain" url="/main" pattern="/">
 <bc_node title="Help" url="/forums" pattern="/forums?id.*"/>
 </bc_node>

Here we have a “Help” node that has two parents. The resulting site map would
look like (using only the title to represent each node):

Key Value List
MyMain Forums, Topics
Forums Help
Topics { empty }
Help { empty }
AltMain Help

1.6 Component Class Overview

BreadCrumbTrailTag:
The main tag class that application will use to render a breadcrumb trails.

This tag will render the current node to the root node (or vise-versa) using a path
separator and specific styles. The application can setup the separator and the
various styles either by specifying default values in the configuration manager or
by specifying attributes on the string. The object factory will be used to discover
the node, the path to the root and the node formatter. The node discovery and
node formatter is optional. If the node discovery is not specified, it is assumed a
node discovery tag was used on the page to define the current node. If the node
formatter was not specified, it is assumed the user specified a body to this tag that
will format the node.

BreadCrumbTrailTagExtraInfo:

This is the tag extra info that describes the attribute to variable mapping
that will occur within the BreadCrumbTrailTag. This tag extra info will define
two variables (that can be used in the body of the BreadCrumbTrailTag):

• BreadCrumbTrailTag.BREADCRUMB_FORMAT_NODE variable
that will contain a reference to the BreadCrumbNode that should be
formatted

• BreadCrumbTrailTag.BREADCRUMB_FORMAT_STYLE variable
that will contain a reference to the String that represents the style that
will be used. Please note that this string can be an empty string or null
to represent no styles to be applied

NodeDiscovery:
This interface defines the contract for classes wishing to discover the

current node. Implementations of this interface will be called when the current
page has not been defined (ie a page scope attribute for
BreadCrumbTrailTag.BREADCRUMB_CURRENT_NODE). The
implementation should discover, in it's own way, the current node when
getCurrentNode() is called and return the node representation of that url.

AbstractNodeDiscovery:

This is an abstract implementation of the NodeDiscovery interface and is
useful to NodeDiscovery implementations that are also a Tag. This abstract class
simplifies the work required when an implementation of the NodeDiscovery will
also provide services as a tag and provides an attribute to set the title. This
abstract class will implement doStartTag, call getCurrentNode to get the current
node and then set the result as a page scope attribute using
BreadCrumbTrailTag.BREADCRUMB_CURRENT_NODE.

PathDiscovery:

This interface defines the contract for classes wishing to discover the path
from current node to the root node. Implementations of this interface will be
called with the current page (specified by a url string) and the current page
context. The implementation will discover the complete path from the current
node to the root or return null when it can't discover the current path.

BreadCrumbNode:

This node represents a structure for holding url and the page title of node.

TemplateNodeFormatterTag:
This tag will format the node and style using a template. A template is a

separate file that will be included in the out stream. This class will take the current
node/style and define them as request attributes when the template file is included
(those attributes can then be used by the template file to format the correct
representation of them)..

HttpServletNodeDiscoveryTag:

This tag and implementation of the NodeDiscovery will discover the
current node from the HttpServletRequest. This implementation will return a valid
Uri (with query string if specified) in the getCurrentNode() method. If this is used
as a tag, this will define a page variable called
BreadCrumbTrailTag.BREADCRUMB_CURRENT_NODE with the value a
string representing the node uri with query string

HtmlAnchorNodeFormatterTag:

This tag will format the node and title using the html anchor pattern of title

InlineTextNodeDiscoveryTag:

This class provides a tag (only) implementation of node discovery that
will allow the user to hardcode the url into the body of this tag and specify the
title in the attributes. The hard coded information is then combined with the title
to make a BreadCrumbNode. The node is then put in a page level attribute called
BreadCrumbTrailTag.BREADCRUMB_CURRENT_PAGE.

NodePair:

This class is a typical pair class that holds a paired association of a node
matcher to the matching node. The nodeMatcher describes the node that matched
the above node and describes the default node information. The node describes
the actual node that matched the nodeMatcher and contains the contextual specific
information.

NodeMatcher:

Defines the contract for a node matcher. Implementations need to provide
three functions:

• A matching function that will take a node and determine if it matches.

• A default title string used for those nodes that match.
• A default url to use if no contextual information is available.

AbstractNodeMatcher:
This abstract implementation of the NodeMatcher interface provides title

and url type services to subclasses. This implementation will provide a title and
url holder variable and a getter method.

RegexNodeMatcher:

This implementation of a NodeMatcher will provide node-matching
services given a specific regex pattern. This class will return true when the
passed node's url matches the specified pattern.

SiteDiscovery:

Defines the contract for a data source for the site. Implementations of this
interface should create and return a site map consisting of NodeMatcher nodes
that describe the site map. The returns map should have each unique
NodeMatcher listed as the key and a List implementation of NodeMatcher nodes
that describe the children of that key.

DynamicPathDiscovery:

This implementation of the PathDiscovery will attempt to create a static
site map and then apply dynamic information to that site map. The dynamic
information can either be in matching nodes with different query strings or in new
nodes that will be assumed to map to the last known node.

XmlPathDiscovery:

This implementation of the PathDiscovery and SiteDiscovery will attempt
to create a static site map from either a filename or string source (both of which is
an XML document). This class will parse the document to create a static map of
regex matchers (where each node can provide a regex matching). If used as a
PathDiscovery, this provides a static view of the site (i.e. no dynamic
capabilities).

1.7 Component Exception Definitions
BreadCrumbException:

Exception thrown in all cases where the BreadCrumbTrailTag cannot
correctly parse, format and draw breadcrumb trail. The only other exception
thrown by this component is the IllegalArgumentException.

1.8 Thread Safety
The Jsp Engine will call the tag(s) in a thread safe manner and therefore thread
safety isn’t an issue. However, many classes are immutable or have no state
information and will naturally be thread-safe.

2. Environment Requirements
2.1 Environment

• At minimum, Java1.4 is required for compilation and executing test cases.
• This component must run inside a JSP 1.1 or greater servlet container.

2.2 TopCoder Software Components
• Object Factory 2.0 – this is a enhancement request (see the enhancement

request document in the docs directory for more details). This enhancement
request was made because a number of classes, which will be created by the
object factory, are hidden from the user completely. These classes have
useful, to the user, construction arguments that can only be called if the object
factory is enhanced. Example: the XmlPathDiscovery will need a filename
for the static site information. Without this enhancement, we’d have needed
to pass the filename through the tag, through the interface to the
implementation. This is information that is very implementation specific and
is very static (to the whole site). By allowing the object factory to construct
the class using a filename embedded in the configuration file, the class can be
constructed with little impact to the public api.

• Configuration manager version 2.1.4 will provide default configuration of the
breadcrumb trail tag.

NOTE: The default location for TopCoder Software component jars
is../lib/tcs/COMPONENT_NAME/COMPONENT_VERSION relative to the
component installation. Setting the tcs_libdir property in
topcoder_global.properties will overwrite this default location.

2.3 Third Party Components

None needed

3. Installation and Configuration
3.1 Package Name

com.topcoder.web.ui.tag

3.2 Configuration Parameters]
The following configuration parameters are available to the BreadCrumbTrailTag
under the com.topcoder.web.ui.tag.BreadCrumbTrailTag namespace

 Parameter Description Values
pathSeparator The path separator that will be

used
String, optional defaults
to “:”

pathSeparatorStyle The css style used when rendering
the path separator

String, optional,
defaults to nothing

nodeStyle The non-root, non-current node css
style

String, optional,
defaults to nothing

rootNodeStyle The root node css style String, optional,
defaults to nothing

currentNodeStyle The current node css style String, optional,
defaults to nothing

mouseOverStyle The mouse over css style for all
nodes

String, optional,
defaults to nothing

pathDirection The direction of the path between
the root node and the current node

Integer, optional,
defaults to
ROOT_TO_CURRENT

silentErrors Whether errors should be silently
ignored

Boolean, optional,
defaults to false

The following configuration parameters are available to the BreadCrumbTrailTag
under the com.topcoder.web.ui.tag.BreadCrumbTrailTag namespace

 Parameter Description Values
pathSeparator The path separator that will be

used
String, optional defaults
to “:”

pathSeparatorStyle The css style used when rendering
the path separator

String, optional,
defaults to nothing

nodeStyle The non-root, non-current node css
style

String, optional,
defaults to nothing

rootNodeStyle The root node css style String, optional,
defaults to nothing

currentNodeStyle The current node css style String, optional,
defaults to nothing

mouseOverStyle The mouse over css style for all
nodes

String, optional,
defaults to nothing

pathDirection The direction of the path between
the root node and the current node

Integer, optional,
defaults to
ROOT_TO_CURRENT

silentErrors Whether errors should be silently
ignored

Boolean, optional,
defaults to false

The following classes can have object factory specified constructor parameters.

TemplateNodeFormatterTag

Parameter Description Values
template The name of the template JSP that

will be used to generate the
anchor.

String - required

XmlPathDiscovery

Parameter Description Values
filename The location of the file that

contains the XML site map
String, required

XmlPathDiscovery

Parameter Description Values
source A string containing either a

filename or a direct XML
document

String, required

isFile True if the source is a file, Boolean, required

3.3 Dependencies Configuration
None

4. Usage Notes
4.1 Required steps to test the component

• Extract the component distribution.

• Follow Dependencies Configuration.

• Execute ‘ant test’ within the directory that the distribution was extracted to.

4.2 Required steps to use the component
Deploy the bread_crumb_trail.tld tag library definition file to the WEB-INF
folder
Deploy the bread_crumb_trail.jar to the classpath of your web server
Reference the bread_crumb_trail.tld in your JSP page
Create a site or page XML data source with titles and urls of pages composing
Bread Crumb Trail.
Create a BreadBrumbTrail tag and reference the collection

4.3 Demo
There are several demonstrations of this component that can be done.

For the following demonstrations, assume the users have visited the following pages
before the demonstration page:

(Main) http://www.xyz.com

http://www.xyz.com/

(Forums) http://www.xyz.com/forums

(Help) http://www.xyz.com/forums?id=1

The static site map defines them like:

<?xml version="1.0" encoding="UTF-8"?>

<BreadCrumb xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="BreadCrumbTrailSchema.xsd"
 version="v2">

 <bc_node title="Main" url="/" pattern="/">
 <bc_node title="Forums" url="/forums" pattern="/forums">
 <bc_node title="Help" url="/forums?id=1"
 pattern="/forums?id.*"/>
 </bc_node>
 </bc_node>
</BreadCrumb>

4.3.1 Normal demonstration
The following page “http://www.xyz.com/forums?thread=1” defines the following

<%@ taglib uri="WEB-INF/bread_crumb_trail.tld" prefix="bc" %>

<hmtl><body>
My portable hole stopped working on the floor!

<bc:breadCrumbTrail title=”portable hole”>
 <bc:htmlAnchor/>
</bc:breadCrumbTrail>

// etc etc
</body></html>

Would create a bread trail of:
“Main : Forums : Help : portable hole” where:

“Main” would be:
 Main
“Forums” would be:
 Forums
“Help” would be:
 Help
“portable hole” would be:
 portable hole

4.3.2 Weblogic demonstration
We could have used a Weblogic anchors instead (see the weblogic.jsp file in the docs
directory)…

<%@ taglib uri="WEB-INF/bread_crumb_trail.tld" prefix="bc" %>
<%@ taglib uri="http://beehive.apache.org/netui/tags-html-1.0"
prefix="netui”%>

http://www.xyz.com/forums
http://www.xyz.com/forums?id=1
http://www.xyz.com/forums?thread=1

<hmtl><body>
My portable hole stopped working on the floor!

<bc:breadCrumbTrail title=”portable hole” >
 <bc:templateNodeFormatter template=”weblogic.jsp”/>
</bc:breadCrumbTrail>

// etc etc
</body></html>

Would create a bread trail of (note: the netui anchor will get replaced by whatever the
tags generate):
“Main : Forums : Help : portable hole” where:

“Main” would be:
 <netui:anchor href=”/”>Main</netui:anchor>
“Forums” would be:
 <netui:anchor href=”/forums”>Forums</netui:anchor>
“Help” would be:
 <netui:anchor href=”/forums?id=1”>Help</netui:anchor>
“portable hole” would be:
 <netui:anchor href=”/forums?thread=1”>
 portable hole</netui:anchor>

4.3.3 WebSphere demonstration
We could have used a WebSphere anchors instead(see the websphere.jsp file in the
docs directory)…

<%@ taglib uri="WEB-INF/bread_crumb_trail.tld" prefix="bc" %>
<%@ taglib uri="/WEB-INF/tld/engine.tld" prefix="wps" %>

<hmtl><body>
My portable hole stopped working on the floor!

<bc:breadCrumbTrail title=”portable hole” >
 <bc:templateNodeFormatter template=”websphere.jsp”/>
</bc:breadCrumbTrail>

// etc etc
</body></html>

Would create a bread trail of (note: the netui anchor will get replaced by whatever the
tags generate):

“Main : Forums : Help : portable hole” where:

“Main” would be:
 <wps:urlGeneration contentNode="/">
 <A HREF="<%wpsURL.write(out);%>”>Main
 </wps:urlGeneration>

“Forums” would be:
 <wps:urlGeneration contentNode="/forums">
 <A HREF="<%wpsURL.write(out);%>”>Forums
 </wps:urlGeneration>

“Help” would be:
 <wps:urlGeneration contentNode="/forums?id=1">
 <A HREF="<%wpsURL.write(out);%>”>Help

 </wps:urlGeneration>
“portable holde” would be:

 <wps:urlGeneration contentNode="/forums?thread=1">
 <A HREF="<%wpsURL.write(out);%>”>portable hole
 </wps:urlGeneration>

4.3.4 Specified formatting demonstration
We could have used a specialty engine instead

<%@ taglib uri="WEB-INF/bread_crumb_trail.tld" prefix="bc" %>
<%@ taglib uri="/WEB-INF/tld/myAnchors.tld" prefix="abb" %>

<hmtl><body>
My portable hole stopped working on the floor!

<bc:breadCrumbTrail title=”portable hole” rootNodeStyle=”color.green”>
 <abb:anchor
 class=”<%=breadCrumbFormatStyleClass%>”
 href=”<%=breadCrumbFormatNode.getUrl()%>”>
 <%=breadCrumbFormatNode.getTitle() %>
 </abb:anchor>
</bc:breadCrumbTrail>

// etc etc
</body></html>

The above (for just the “main” – but you can probably guess how the others would look)
would then render:

<abb:anchor class=”.rootNodeStyle” href=”/”>Main</abb:anchor>

4.3.5 Specified the node itself using the http servlet tag
The following would define the page via http servlet for a given title.

<%@ taglib uri="WEB-INF/bread_crumb_trail.tld" prefix="bc" %>

<hmtl><body>
My portable hole stopped working on the floor!

<bc:httpServlet title=”portable hole”/>
<bc:breadCrumbTrail>
 <bc:htmlAnchor/>
</bc:breadCrumbTrail>

// etc etc
</body></html>

This demonstration is exactly the same as in section 4.3.1 but using the
httpServlet tag directly

4.3.6 Overriding the page url fully
The following could be used to directly specify the url (overriding any query string or other
information)

<%@ taglib uri="WEB-INF/bread_crumb_trail.tld" prefix="bc" %>

<hmtl><body>
My portable hole stopped working on the floor!

<bc:inlinenode title=”portable hole”>
 /forums/protablehole
</bc:inlinenode>

<bc:breadCrumbTrail>
 <bc:htmlAnchor/>
</bc:breadCrumbTrail>

// etc etc
</body></html>

The current node would then be rendered (using html anchor) like:
portable hole

4.3.7 Multiple parents

Assume the static site map is defined like:

<?xml version="1.0" encoding="UTF-8"?>

<BreadCrumb xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="BreadCrumbTrailSchema.xsd"
 version="v2">

 <bc_node title="MyMain" url="/" pattern="/">
 <bc_node title="Forums" url="/forums" pattern="/forums">
 <bc_node title="Help" url="/forums" pattern="/forums?id.*"/>
 </bc_node>
 </bc_node>

 <bc_node title="AltMain" url="/main" pattern="/">
 <bc_node title="Help" url="/forums" pattern="/forums?id.*"/>
 </bc_node>

</BreadCrumb>

As you can see – the help forums has two parents: “MyMain” and “AltMain”

If the user types in “http://www.xyz.com/forums?id=1”, the component will find the
shortest path back to a root and select the following trail:

“AltMain : Help”

5. Future Enhancements
Additional tags for different portal implementations (JBoss, Pluto, etc.)

	BreadCrumb Trail Tag v2.0 Component Specification
	Design
	Please note that this is almost a complete rewrite of the V1
	Design Patterns
	Industry Standards
	XML, JSP specification 1.1, JSP tag libraries
	Change List
	Tags and their parameters:
	“breadCrumbTrail” tag
	“templateNodeFormatter” tag
	“htmlAnchor” tag
	“httpServlet” tag
	“inlinenode” tag

	Required Algorithms
	The template
	Query Strings
	Overall process
	Determining the current node
	Determining the current path to the root
	Writing out the header and styles
	Writing out the node formatting

	Jsp Engine calls doInitBody method
	Writing out the ending tags
	Dynamic Path Discovery
	XML Path Discovery

	Value List
	Component Class Overview
	Component Exception Definitions
	Thread Safety

	Environment Requirements
	Environment
	TopCoder Software Components
	Third Party Components
	None needed

	Installation and Configuration
	Package Name
	Configuration Parameters]
	Dependencies Configuration

	Usage Notes
	Required steps to test the component
	Required steps to use the component
	Demo
	Normal demonstration
	Weblogic demonstration
	WebSphere demonstration
	Specified formatting demonstration
	Specified the node itself using the http servlet tag
	Overriding the page url fully
	Multiple parents

	Future Enhancements

