
BreadCrumb Trail Control v2.0 Component Specification

1. Design
Many websites include breadcrumb trails to help their users navigate complex
hierarchical structures. This component provides an ASP.NET web control, which
renders a breadcrumb trail from a bound data source, allowing web authors to add
breadcrumb trails to their pages without additional coding.

The appearance of the breadcrumbs is controlled by several of the control’s
properties. The NodeStyle property is used as the style attribute for each normal
node in the breadcrumb trail; RootNodeStyle and CurrentNodeStyle are used for
those two special nodes. MouseOverNodeStyle is the CSS class to specify the css
style when the mouse is over any node. PathSeparator is used to separate each
node, and PathSeparatorStyle is its style. The configuration manager has been
introduced to allow the application to setup the defaults over all pages (and
eliminate the need to duplicate the information in every page).

Additionally, the user can control the processing of the breadcrumb trail by
determining whether the nodes are represented from root to current or current to
root. The disposition of the errors can be set to silently ignore errors, render the
errors in place or throw the error to the IIS engine. The type of implementation
can be set to allow the application to control the exact processing that will be used
and can include either the included implementation or custom implementations
that the application includes.

In addition to the above, the control can be used to dynamically adjust the
included site map based on the usage patterns:

1. Query strings are now included in both the node matching (the site map
XML document includes full regex matching capabilities in identifying
the nodes) and generated trails.

2. The last query string for each node in the current path will be
‘remembered’ and rendered back into the trail – regardless of how the site
map has been setup.

3. If a page has not explicitly been specified in the site map, it will
automatically be appended to the end of the current trail.

This enhancement has separated the logic in this component into 3 basic areas:

1. The current node discovery process. This process provides the discovery
process that the control uses to determine what the current page (otherwise
known as the node). This component includes an implementation to
discover the current node from the HttpRequest using the full Url and
query strings.

2. The path discovery process. The path discovery process that will attempt

to discover the path from the current node (as identified above) and the
root node. Two implementations of this have been included:

a. A dynamic path discovery process that will use the XML site map
as a base and then include dynamic capability (as described above)
on top of it.

b. A static path discovery process that will mimic the behavior of the
v1.0 component (with the exception that regex patterns can be
specified also).

3. The path writing process. The path writing process allows the type of node

rendering for the path to be fully pluggable to allow various ways of
representing the path. This component provides 2 implementations of
this:

a. A simple html anchor implementation to generate html anchors.
b. An order list implementation where each item is represented as a

separate list item.

Please note that this is almost a complete rewrite of the V1.0 component and the
class diagrams have not been marked up to reflect what has changed because
everything has essentially changed.

1.1 Design Patterns
Strategy Pattern – is used extensively in this application to provide various
implementations of functionality that can easily be swapped

1.2 Industry Standards

o HTML and CSS are used to render the breadcrumb trail
and control its appearance. This component allows the
web designer to specify the CSS style classes to be
used. The related CSS style sheet will need to be
included on the webpage outside of this component.

o The control can generate the breadcrumb trail from an
XML document describing the website’s layout. See
the related ExampleBreadCrumbSource_2.0.xml and
BreadCrumbTrailSchema_2.0.xsd in the docs directory
for details. Please note that this file/schema is
compatible and interchangeable with the Java Bread
Crumb Trail v2.0 component

1.3 Control parameters:

The breadcrumb trail control can have most of its attributes defined in a
configuration file for easy assigning of common attributes (see the configurable
column). This control has the following attributes assignable to the control:

Attribute Description Required Configurabl
e

PathSeparator The characters to use to
separate nodes in the path

No Yes

PathSeparatorStyle The CSS style class of the
separator

No Yes

NodeStyle The CSS style class of the
non-root and non-current
nodes

No Yes

RootNodeStyle The CSS style class of the
root node

No Yes

CurrentNodeStyle The CSS style class of the
current node

No Yes

MouseOverStyle The CSS style class when the
mouse hovers over any node

No Yes

SilentErrors Whether exceptions should
silently be ignored

No Yes

PathDirection The direction of the trail No Yes
NodeDiscoveryKe
y

The ObjectFactory key to use
to create the INodeDiscovery
implementation

No* Yes*

PathDiscoveryKey The ObjectFactory key to use
to create the IPathDiscovery
implementation

No* Yes*

PathWriterKey The ObjectFactory key to use
to create the IPathWriter
implementation

No* Yes*

Title The title of the current page No No
DataSource The data source to use for the

path.
No No

* Required if the configuration property was not set

The DataSource, when specified, is considered a path override and the normal
path discovery process will not be done. The DataSource can be one of the
following sources:

1. BreadCrumbNode[] – an array of bread crumb nodes to use for the
specific page

2. IList of BreadCrumbNode(s) – a list of bread crumb nodes for the specific
page

3. DataSet where the first DataTable matches the following
4. DataTable with a “Title” and “Url” column. BreadCrumbNode(s) will be

defined from those columns and used as the path.

1.4 Required Algorithms

1.4.1 The CSS Style
The web page designer should include a CSS file defining the various styles that
will be used by this component. An example file could look like:
.root { color : red }
.current { color : green }
.node { color : #10ABCD }
.hover { color : #AA0CBF }
.mouseout { color : #CCBA00 }
.path { color : #BBEBC0 }

The various style(s), shown above, can then be specified on the control (or via the
property sheet in VS.Net) like:

<brd:BreadCrumbTrailControl
 NodeStyle=”.node”
 CurrentNodeStyle=”.current”
 … etc …
>
</brd:BreadCrumbTrailControl>

1.4.2 Query Strings
The old component ignored the query string portion of the Url. This version will
handle query strings in the node discovery, the path discovery and in the path
writer.

The node discovery will simply create the node with a url that has the query string
appended to it (i.e. “www.topcoder.com?id=1”). The node discovery will sort the
query strings by the key to allow easier, consistent regex pattern matching
creation.

The path discovery will can then use the query string portion as part of the
matching (in other words, the regex used to match nodes can include patterns on
the query string). The developer should note that if query strings are used in the
site, the site map must include query string matching in the xml file (or a “.*”
regex pattern on the end of the url to match all query strings for that url). Please
also note that differing query strings (on the same url) will create different nodes
on the trail if the node is a dynamic node (i.e. doesn’t match any of the regex
pattern).

The node formatter will then include the query string as part of the links that are
rendered.

The path writer process will then write out the url, with any included query string,
as part of the path.

1.4.3 Overall process
The overall process that the BreadCrumbTrailControl will follow is:

1. Determine the current node.
2. Determine the current path to the root.
3. Write out the path

Each of these three steps will be completed by the various implementations. The
BreadCrumbTrailControl relies on the Object Factory component to create the
implementations at render time. The application can customize the
implementation by specifying unique keys (see Object Factory documentation) to
each of the implementations in the configuration file. The key to use (and thus
the implementation to use) can then be specified as properties to the control

There are two enumerations that affect the processing:

1. PathDirection determines how to iterate the path – either from root to
current or current to root (see the Path Writer discussion for more details)

2. ErrorDisposition determines how the control handles any exceptions.
SilentlyIgnore will ignore any exceptions, RenderException will render
any exceptions to the html document and ThrowException will cause the
exception to be rethrown to the IIS engine.

1.4.3.1 Determining the current node
The current node is by using the object factory, create the INodeDiscovery class
specified by the “NodeDiscoveryKey” property and call GetCurrentNode with the
title (if specified) and the page context.

If the HttpRequestNodeDiscovery implementation will simply interrogate the
Page context for the url and query strings, sort the query strings by name and then
return a BreadCrumbNode with the passed title and the url (url + sorted query
string).

1.4.3.2 Determining the current path to the root
We determine the current path to the root node by calling an IPathDiscovery
implementation with the current node (defined in 1.5.2.1):

1. Using the object factory, create the IPathDiscovery class specified by
the “PathDiscoveryKey” property.

2. Call GetPath with the current node
3. If a path is returned, skip back to step 3 of the overall process
4. If the path is null, simply return (couldn’t find a path and nothing

should be rendered)
5. If an exception is thrown, handle the exception as described above.

Please note that this process will be ignored if the application specifies a
DataSource for the page (which is a path override for the current page).

1.4.3.3 Writing out the path
This is where things get interesting for the control. The object factory will create
the IPathWriter class specified by the “PathWriterKey” property and a call to the
WritePath method will be done to write out the path.

There are two ways of processing the path – backwards and forwards. We can
either iterate the path at the 0th index position (processing root to current) or at
the size-1 position (processing current to root). The processing will then either
run forwards or backwards. Regardless of the direction of the path – each node
will be formatted by the implementation. The anchor implementation will simply
write out an html anchor for each node (using the correct style). The ordered list
implementation will create a new list item for each node (each list item will be an
anchor itself).

1.4.4 Dynamic Path Discovery
The dynamic path discovery is really the heart of this component. The class will
attempt to discover the path of the current node to the root using a combination of
a ‘learned’ path and a static site map (see 1.5.4 for information about the static
site map).

The developer should note that the DynamicPathDiscovery class, when it needs to
discover the underlying site map, will call the Object Factory with the
ISiteDiscovery type – presumably getting back the XmlPathDiscovery class to
read and parse the xml representing the static site map. The user can modify the
Object Factory configuration to return a different ISiteDiscovery type if it wishes
to customize the source of the underlying site information.

Both of those variables are kept in session variables that will be reused every time
the class is called for a path.

The site map is simply a mapping of INodeMatcher (key) object to an IList
(value) of INodeMatcher objects. The key is considered the parent of all the
objects in the list (the children). Note: the developer is free to also create a
reverse mapping (child to all parents) if it will help their implementation. The
only restriction the developer has (in assigning new state variables) is to define a
public static variable for that state information (like
CURRENT_REVERSE_SITEMAP).

The current path is the path the class has ‘learned’ so far. Each element of the
path is of NodePair type and contains the actual node (including any contextual
information [like the query string]) and the INodeMatcher that the node matched
(which will be used to access the site map).

The rules that we will be following for generating a path is:
1. If the current node matches any of the nodes on the current path (as

defined by the node matcher), we take the path from the current root to
the current node – discarding all nodes after that one.

2. If current node matches no nodes in the site map, it’s considered a
‘new’ node that is linked from the last site. In other words, we
append the node to the current path (if there is one, if not – we simply
return null because we don’t know the path).

3. Otherwise, we perform a shortest path search on the site map to a root
and then try to match it up with as much of the current path as
possible.

The underlying INodeMatcher for this implementation will be a regex matcher
(which will be fairly slow on large sites). Because of that, we perform two quick
checks that cover two common situations:
1. We iterate the current path backwards and see if the node matches the

INodeMatcher for any element. If the element has a null matcher, compare
the node’s URL directly to determine if it matches. If a match is made and it
is not the last NodePair on the chain, a new NodePair is generated using the
current node and the node matcher (effectively discarding the old node’s
contextual information) and then discard all elements past the matching node.
A new path from root to that node is returned. This will cover the situations
where the user clicked on the trail (which should match somewhere on the
trail) or pressed the back button (which should match the last node).

2. We take the last element in the path and see if the current node matches any of

the children of that node. If it does, we simply append a new NodePair to the
end of the path and return the new path. This covers the situation where they
went to a place that is well defined (in the site map).

3. Failing those two – we will do a shortest path search on the sitemap for any

INodeMatcher that matches the node. Example:
We may iterate the sitemap and find 3 potential candidates (i.e. the current
node matched 3 INodeMatcher keys in the site map). We then iterate all
the parents of those 3 nodes (this is where a reverse site map may come in
handy!). If any of those parents have no parents, then we have found a
shortest path to a root node. If they all have parents, we then recursively
search the parents of the parents until we have found a root node (or more
than one). Note: the developer is free to implement whatever shortest path
algorithm they choose – as long as it correctly identifies the shortest path
(or paths if there are more than one).

4. We then take the shortest path(s) and try to determine which one has the most
commonality with the current path starting with the root node forward.
Example:

Let’s say our current path is A->B->C->D->E

Let’s say we found two paths to our current page M:
A->B->L->M
A->B->C->M

Because “A->B->C->M” had the 3 nodes in common with our current
path, we choose that path. If we have more than one with the same
commonality, choose the first one (where ‘first’ can be defined anyway
you choose).

5. Calculate the new path, save it and return it.

6. If the no shortest path is found for the node and we have a current path, we

assume this is a new ‘dynamic’ link and simply append the node onto the end
of the current path.

7. If no shortest path was found for the node and we have no current path (i.e.

the user probably went to this page directly and it’s not listed in the site map),
return null indicating we have no idea what the path is.

1.4.5 XML Path Discovery
The Xml Path Discovery object has two functions, it can be used as a static map
path discovery (i.e. not dynamic capable) and it can serve as a source for the static
site information to other IPathDiscovery implementations (like the Dynamic Path
Discovery).

Every node found in the Xml document should appear as a key in the site map
with a value of an IList. That list will then hold references to any children that
node may have (or be empty if it’s a leaf node).

Let’s take an example file:
 <bc_node title="MyMain" url="/" pattern="/">
 <bc_node title="Forums" url="/forums" pattern="/forums">
 <bc_node title="Help" url="/forums" pattern="/forums?id.*"/>
 </bc_node>
 <bc_node title="Topics" url="/topics" pattern="/topics"/>
 </bc_node>

 <bc_node title="AltMain" url="/main" pattern="/">
 <bc_node title="Help" url="/forums" pattern="/forums?id.*"/>
 </bc_node>

Here we have a “Help” node that has two parents. The resulting site map would
look like (using only the title to represent each node):

Key Value List
MyMain Forums, Topics
Forums Help
Topics { empty }
Help { empty }
AltMain Help

1.4.6 Session Data
The bread trail crumb control will make use of Session data to track the path the
user has taken and to store the site map.

The path to the current node (i.e. an array of NodePair[s]) is stored in the Session
data by the DynamicPathDiscovery class, as each node has been discovered. This
allows the DynamicPathDiscovery class the ability to:

• Provides a quick lookup on the current path if the current node is
already on the path (thus preventing any expensive path searching for
most cases where the user selects a node on the path or goes
backwards on the path.

• Allows the class to build a dynamic path outside of the static site map
and remember the trail

Both the DynamicPathDiscovery and XmlPathDiscovery will store the static site
map in the Session data to improve performance by only reading and parsing the
static information once.

1.5 Component Class Overview

BreadCrumbTrailControl:
This is the main control class that application will use. This control will

render the current node to the root node (or vice-versa) using a path separator and
specific styles. The application can setup the separator and the various styles
either by specifying default values in the configuration manager or by specifying
attributes on the string. The object factory will be used to discover the node, the
path to the root and the formatting of the path using the key(s) specified on the
control.

BreadCrumbTrailControlDesigner:

This class is the control designer for the BreadCrumbTrailControl. The
control designer will interact with the IDE to provide a custom designer
environment. Currently, this class simply interacts with the
BreadCrumbTrailControl to display the Html that it renders.

ErrorDisposition:

This enumeration describes the values that the various error dispositions
can be. The enumeration will be used by the breadcrumb trail control to
determine how to handle any exceptions that occur. The exceptions can be
ignored, can be rendered or can be thrown.

PathDisposition:

This enumeration describes the values the path direction can allow. The

path direction is used by the breadcrumb trail control to determine the direction to
render the path in (the node is the first node to the last node)

INodeDiscovery:

This interface defines the contract for classes wishing to discover the
current node. The implementation should discover, in its own way, the current
node when GetCurrentNode is called and return the node representation of that
url.

IPathDiscovery:

This interface defines the contract for classes wishing to discover the path
from current node to the root node. Implementations of this interface will be
called with the current node and the current page context. The implementation is
then supposed to discover the complete path from the current node to the root or
return null when it can't discover the current path.

BreadCrumbNode:

This class represents the structure for holding the url and the page title of a
specific node.

IPathWriter:

This interface defines the contract for classes wishing to write out the
discovered path. Implementations of this interface will be called with a writer,
the path to write and the breadcrumb trail control itself. The implementation is
then responsible for formatting the path in its own way - writing the path out to
the HtmlTextWriter

AbstractPathWriter:

This abstract implementation of the IPathWriter will provide some of the
common functionality when writing a path. This abstract implementation will
provide the following functionality:

HttpRequestNodeDiscovery:

This implementation of the INodeDiscovery will discover the current node
from the HttpRequest for the given page. This implementation will return a valid
Url (with query string if specified) in the GetCurrentNode method. The query
string will be appended to the Url in a sorted order.

RegexNodeMatcher:

This implementation of an INodeMatcher will provide node-matching
services given a specific regex pattern. This class will return true when the passed
node's url matches the specified pattern.

NodePair:

This class is a typical pair class that holds a paired association of a node
matcher to the matching node. The node describes the actual node that matched
the node matcher and contains the contextual specific information.

DynamicPathDiscovery:
This implementation of the IPathDiscovery will attempt to create a static

site map and then apply dynamic information to that site map. The dynamic
information can either be in matching nodes with different query strings or in new
nodes that will be assumed to map to the last known node.

XmlPathDiscovery:

This implementation of the IPathDiscovery and
ISiteDiscovery will attempt to create a static site map from either a
filename or string source (both of which is an XML document). This class will
parse the document to create a static map of regex matchers (where each node can
provide a regex matching). If used as an IPathDiscovery, this provides a static
view of the site (i.e. no dynamic capabilities).

INodeMatcher:

Defines the contract for a node matcher. Implementations need to provide
three functions:

• A matching function that will take a node and determine if it
matches.

• A default title string used for those nodes that match.
• A default url to use if no contextual information is available.

AbstractNodeMatcher:

This abstract implementation of the INodeMatcher interface provides title
and url type services to subclasses. This implementation will provide a title and
url holder variable and getters.

ISiteDiscovery:

Defines the contract for a data source for the site. Implementations of this
interface should create and return a site map (in an IDictionary implementation)
consisting of INodeMatcher nodes that describe the site map. The returns
IDictionary should have each unique INodeMatcher listed as the key and an IList
of INodeMatcher that describe the children of that key.

AnchorPathWriter:

This path writer will write the node and title using the html anchor pattern
of node.Title

OrderedListPathWriter:

This path writer will write the node and title using the ordered list pattern
where each rendered node is a separate line item.

1.6 Component Exception Definitions
BreadCrumbException:

Exception thrown in all cases where the BreadCrumbTrailControl cannot
correctly parse, format and write breadcrumb trail.

1.7 Thread Safety
The IIS Engine will call the control(s) in a thread safe manner and therefore
thread safety isn’t an issue. However, many classes are immutable or have no
state information and will naturally be thread-safe.

The only concern would be in the Session data. Session data can be accessed in
multiple threads simultaneously if a user has opened up two browser windows
under the same session. This component makes no efforts to detect or prevent
this situation. However, this should prevent no difficulties to the component.
There are two things that are stored in the session:

1. Static site information

2. Current node path

The static site information is a non-changeable property under most
circumstances. The only time it is writable is when it is first created. If two
threads attempt to create the session variable at the same time, the resulting data
will be the same (since both threads would source from the same file) and the last
thread 'wins'. The only affect this has would be a slight slowdown on both
threads (and only on the first access).

The current node path is more problematic since it's a read/write property.
However, according to a PM post in the java version forum (of the Bread Crumb
Trail Tag) – we should not be concerned about multiple, same session issues.
What will occur if multiple threads read/write the current node path is that the last
thread 'wins' again – in other words, the thread that finishes last will be the one
setting the new current node path.

2. Environment Requirements

2.1 Environment
• .NET CLR version 1.1;
• C#.NET compiler
• IIS
• Visual Studio.NET, if you want to test the integration with the ASP.NET

Designer.

2.2 TopCoder Software Components
• Object Factory v1.0 –is used by the component to create the various

implementations in the component.

• Configuration Manager v2.0 - will provide default configuration of the
breadcrumb trail control.

NOTE: The default location for TopCoder Software component jars

is../lib/tcs/COMPONENT_NAME/COMPONENT_VERSION relative to the
component installation. Setting the tcs_libdir property in
topcoder_global.properties will overwrite this default location.

2.3 Third Party Components

None needed

3. Installation and Configuration

3.1 Package Name
TopCoder.Web.UI.WebControl.BreadCrumb

3.2 Configuration Parameters]
The following configuration parameters are available to the
BreadCrumbTrailControl under the
TopCoder.Web.UI.WebControl.BreadCrumb.BreadCrumbTrailControl
namespace

Parameter Description Values
pathSeparator The path separator that will be used String, optional

defaults to “:”
pathSeparatorStyle The css style used when rendering the

path separator
String, optional,
defaults to nothing

NodeStyle The non-root, non-current node css
style

String, optional,
defaults to nothing

rootNodeStyle The root node css style String, optional,
defaults to nothing

currentNodeStyle The current node css style String, optional,
defaults to nothing

mouseOverStyle The mouse over css style for all nodes String, optional,
defaults to nothing

pathDirection The direction of the path between the
root node and the current node

Integer, optional,
defaults to
RootToCurrent

silentErrors Whether errors should be silently
ignored

Integer, optional,
defaults to
SilentlyIgnore

nodeDiscoveryKey The object factory key to use when
creating the INodeDiscovery
implementation

String, required
(optional if specified
on the control)

pathDiscoveryKey The object factory key to use when
creating the IPathDiscovery
implementation

String, required
(optional if specified
on the control)

pathWriterKey The object factory key to use when
creating the IPathWriter
implementation

String, required
(optional if specified
on the control)

The following classes can have object factory specified constructor parameters
(please see the Object Factory documentation on how to set it up).
XmlPathDiscovery

Parameter Description Values
filename The location of the file that contains

the XML site map
String, required

XmlPathDiscovery

Parameter Description Values
source A string containing either a

filename or a direct XML document
String, required

isFile True if the source is a file, Boolean, required

3.3 Dependencies Configuration
Set up the web server to serve ASP.NET pages and point it at the build/asp
directory.

4. Usage Notes

4.1 Required steps to test the component
• Extract the component distribution.

• Copy the content of test_files/iis to your IIS web root.

• Execute ‘nant test’ within the directory that the distribution was extracted to.

4.2 Required steps to use the component
In an ASP.NET page:
<%@Register TagPrefix=”tc”
 Namespace="TopCoder.Web.UI.WebControl.BreadCrumb"
 Assembly="TopCoder.Web.UI.WebControl.BreadCrumb”%>
<tc:BreadCrumbTrailControl runat="server" />

4.3 Demo
There are several demonstrations of this component that can be done.

For the following demonstrations, assume the users have visited the following
pages before the demonstration page:

(Main) http://www.xyz.com

(Forums) http://www.xyz.com/forums

(Help) http://www.xyz.com/forums?id=1

The static site map defines them like:
<?xml version="1.0" encoding="UTF-8"?>

<BreadCrumb xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="BreadCrumbTrailSchema.xsd"
 version="v2">

 <bc_node title="Main" url="/" pattern="/">
 <bc_node title="Forums" url="/forums" pattern="/forums">
 <bc_node title="Help" url="/forums?id=1"
 pattern="/forums?id.*"/>
 </bc_node>
 </bc_node>
</BreadCrumb>

4.3.1 Normal demonstration
The following page “http://www.xyz.com/forums?thread=1” defines the
following

<%@Register TagPrefix=”tc”
 Namespace="TopCoder.Web.UI.WebControl.BreadCrumb"
 Assembly="TopCoder.Web.UI.WebControl.BreadCrumb”%>

<hmtl><body>
My portable hole stopped working on the floor!

<tc:BreadCrumbTrailControl
 Title=”portable hole”
 runat=”server”/>

// etc etc
</body></html>

Would create a bread trail of:
“Main : Forums : Help : portable hole where:

“Main” would be:
 Main
“Forums” would be:
 Forums
“Help” would be:

http://www.xyz.com/
http://www.xyz.com/forums
http://www.xyz.com/forums?id=1
http://www.xyz.com/forums?thread=1

 Help
“portable hole” would be:
 portable hole

4.3.2 Using styles
Assume we have a style sheet called “bread.css” that is defined as:

.root { color : red }

.current { color : green }

.node { color : #10ABCD }

.mouseover { color : #CCBA00 }

The following page “http://www.xyz.com/forums?thread=1” defines the
following

<%@Register TagPrefix=”tc”
 Namespace="TopCoder.Web.UI.WebControl.BreadCrumb"
 Assembly="TopCoder.Web.UI.WebControl.BreadCrumb”%>

<hmtl>
<head>
<link rel="stylesheet" type="text/css" href="bread.css">
</head>
<body>
My portable hole stopped working on the floor!

<tc:BreadCrumbTrailControl
 Title=”portable hole”
 NodeStyle=”.node”
 CurrentNodeStyle=”.current”
 RootNodeStyle=”.root”
 MouseOverStyle=”.mouseover”
 PathSeparator=”>>>”
 runat=”server”/>

// etc etc
</body></html>

Would create a bread trail of:
“Main >>> Forums >>> Help >>> portable hole where:

“Main” would be:
 <a href=”/” class=”.root”
 onmouseover=”this.class=’.mouseover’”
 onmouseout=”this.class=’.root’”>Main
“Forums” would be:
 <a href=”/forums” class=”.node”
 onmouseover=”this.class=’.mouseover’”
 onmouseout=”this.class=’.node’”>Forums
 “Help” would be:
 <a href=”/forums?id=1” class=”.node”
 onmouseover=”this.class=’.mouseover’”

http://www.xyz.com/forums?thread=1

 onmouseout=”this.class=’.node’”>Help
 Help
“portable hole” would be:
 <a href=”/forums?thread=1” class=”.current”
 onmouseover=”this.class=’.mouseover’”
 onmouseout=”this.class=’.current’”>portable hole

4.3.3 Ordered List demonstration
Assume the object factory has been setup to create an instance of
OrderedListPathWriter for a key of “orderedlist”.

The following page “http://www.xyz.com/forums?thread=1” defines the
following

<%@Register TagPrefix=”tc”
 Namespace="TopCoder.Web.UI.WebControl.BreadCrumb"
 Assembly="TopCoder.Web.UI.WebControl.BreadCrumb”%>

<hmtl><body>
My portable hole stopped working on the floor!

<tc:BreadCrumbTrailControl
 Title=”portable hole”
 PathWriterKey=”orderedlist”
 runat=”server”/>

// etc etc
</body></html>

Would create a bread trail of:
1. Main
2. Forums
3. Help
4. portable hole

Where:

“Main” would be:
 Main
“Forums” would be:
 Forums
“Help” would be:
 Help
“portable hole” would be:
 portable hole

http://www.xyz.com/forums?thread=1

4.3.4 Path Override
The following demonstrates using a path override to specify a specific path. The
following would be the page form:
<%@ Register TagPrefix="tc"
Namespace="TopCoder.Web.UI.WebControl.BreadCrumb"
Assembly="BreadCrumbControl" %>

<%@ Page language="c#" Src="ArrayWebForm.aspx.cs"%>
<HTML>
 <body MS_POSITIONING="GridLayout">
 <p>This web page contains a BreadCrumbControl binding to an
Array object </p>
 <form id="Form1" method="post" runat="server">
 <tc:BreadCrumbTrailControl id="bcc" runat="server"/>
 </form>
 </body>
</HTML>

The code will then look like (binding it to a simple array):
public class ArrayDocWebForm : System.Web.UI.Page
{
 protected BreadCrumbTrailControl bcc;
 private void Page_Load(object sender, System.EventArgs e)
 {
 BreadCrumbNode[] nodes = new BreadCrumbNode[3];
 nodes[0] = new BreadCrumbNode("Main",
 "http://www.xyz.com");
 nodes[1] = new BreadCrumbNode("Forums",
 "http://www.xyz.com/forums");
 nodes[2] = new BreadCrumbNode("Help",
 "http://www.xyz.com/forums/&id=1");

 bcc.DataSource = nodes;
 bcc.DataBind();
 }

 override protected void OnInit(EventArgs e)
 {
 InitializeComponent();
 base.OnInit(e);
 }

 private void InitializeComponent()
 {
 this.Load += new System.EventHandler(this.Page_Load);
 }
}

The resulting path should look similar to the path shown in 4.3.1

4.3.5 Multiple parents
Assume the static site map is defined like:

<?xml version="1.0" encoding="UTF-8"?>

<BreadCrumb xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="BreadCrumbTrailSchema.xsd"
 version="v2">

 <bc_node title="MyMain" url="/" pattern="/">
 <bc_node title="Forums" url="/forums" pattern="/forums">

 <bc_node title="Help" url="/forums" pattern="/forums?id.*"/>
 </bc_node>
 </bc_node>

 <bc_node title="AltMain" url="/main" pattern="/">
 <bc_node title="Help" url="/forums" pattern="/forums?id.*"/>
 </bc_node>

</BreadCrumb>

As you can see – the help forums has two parents: “MyMain” and “AltMain”

If the user types in “http://www.xyz.com/forums?id=1”, the component will find the
shortest path back to a root and select the following trail:

“AltMain : Help”

5. Future Enhancements
• Provide different node discovery implementations (absolute url versus relative

url)

• Provide more path discovery implementations (database, config manager, etc)

• Provide more path writers (table driven, indenting, etc)

	BreadCrumb Trail Control v2.0 Component Specification
	Design
	Please note that this is almost a complete rewrite of the V1
	Design Patterns
	Industry Standards
	HTML and CSS are used to render the breadcrumb trail and con
	The control can generate the breadcrumb trail from an XML do
	Control parameters:
	Required Algorithms
	The CSS Style
	Query Strings
	Overall process
	Determining the current node
	Determining the current path to the root
	Writing out the path

	Dynamic Path Discovery
	XML Path Discovery

	Value List
	Session Data
	Component Class Overview
	Component Exception Definitions
	Thread Safety

	Environment Requirements
	Environment
	TopCoder Software Components
	Third Party Components
	None needed

	Installation and Configuration
	Package Name
	Configuration Parameters]
	Dependencies Configuration

	Usage Notes
	Required steps to test the component
	Required steps to use the component
	Demo
	Normal demonstration
	Using styles
	Ordered List demonstration
	Path Override
	Multiple parents

	Future Enhancements

