

Distributed Protocol Factory 2.0a Requirements Specification

1. Scope

1.1 Overview
The Distributed Protocol Factory provides a generic API for accessing messaging, as well as a default
implementation for nodes on the same subnet. This enhancement to the component will provide a new
implementation that allows for data to be compressed before transferring it to other nodes. This will allow
nodes in a band width constrained environment to more efficiently communicate.

1.2 Logic Requirements

1.2.1 Pluggable Compression
The compression mechanism must be pluggable to allow for different compression implementation to be
selected as they best fit the environment.

1.2.2 Default Compression Implementation
There must be a default compression provided with the component.

1.2.3 Self Identifying Compression
The compressed messages must retain some information so the receiving node can identify what
compression is used and select the correct decompression method. If the compression method is
unknown to the receiver it will take actions consistent with the error handling already in the Distributed
Protocol Factory.

NB: The compression is considered part of the protocol, not an application layer on top of the protocol, so
the protocol must deal with the unknown compression method error.

1.2.4 Default Implementation
Where appropriate and consistent with the enhancement requirements and other TopCoder guidelines,
the default implementation may be reused in part or whole in any manner.

1.3 Required Algorithms
• How is the compression done?
• How is the compression algorithm identified by the receiver?

1.4 Example of the Software Usage
A client is running a large group of nodes that will be synching large caches using the Distributed Protocol
Factory. Due to bandwidth constraints between the primary and secondary server groups, it is not
feasible to transmit the data without compression. The client will use the compressing version of the
Distributed Protocol Factory to enable them to synchronize their servers’ caches in this environment.

1.5 Future Component Direction
None specified.

2. Interface Requirements

2.1.1 Graphical User Interface Requirements
None.

2.1.2 External Interfaces
The design of this component will identify any necessary underlying protocols (such as tcp/ip or udp.)
LGPL is discouraged, JINI and JXTA are allowed.

Confidential ©TopCoder Software, Inc. 2002 Page 1

2.1.3 Environment Requirements

• Development language: Java 1.4
• Compile target: Java 1.4
• Multiple runtime environments

o WebLogic
o JBoss
o JVM 1.4

• It is not guaranteed that the component will be running inside a J2EE container, but the J2EE
jar will be accessible.

2.1.4 Package Structure
com.topcoder.network.synchronization.compression

3. Software Requirements

3.1 Administration Requirements

3.1.1 What elements of the application need to be configurable?
None required.

3.2 Technical Constraints

3.2.1 Are there particular frameworks or standards that are required?
As determined by design.

3.2.2 TopCoder Software Component Dependencies:
Compression Utility 2.0 may be used.
(Do not use configuration manager, directly or indirectly.)

**Please review the TopCoder Software component catalog for existing components that can be
used in the design.

3.2.3 Third Party Component, Library, or Product Dependencies:
None.

3.2.4 QA Environment:
• Solaris 7
• RedHat Linux 7.1
• Windows 2000
• Windows 2003

3.3 Design Constraints
The component design and development solutions must adhere to the guidelines as outlined in
the TopCoder Software Component Guidelines. Modifications to these guidelines for this
component should be detailed below.

3.4 Required Documentation

3.4.1 Design Documentation
• Use-Case Diagram
• Class Diagram
• Sequence Diagram
• Component Specification

3.4.2 Help / User Documentation
• Design documents must clearly define intended component usage in the ‘Documentation’ tab

Confidential ©TopCoder Software, Inc. 2002 Page 2

http://www.topcodersoftware.com/pages/c_showroom.jsp

of Poseidon.

Confidential ©TopCoder Software, Inc. 2002 Page 3

	Distributed Protocol Factory 2.0a Requirements Specification
	Scope
	Overview
	Logic Requirements
	Pluggable Compression
	Default Compression Implementation
	Self Identifying Compression
	Default Implementation

	Required Algorithms
	Example of the Software Usage
	Future Component Direction

	Interface Requirements
	Graphical User Interface Requirements
	External Interfaces
	Environment Requirements
	Package Structure

	Software Requirements
	Administration Requirements
	What elements of the application need to be configurable?

	Technical Constraints
	Are there particular frameworks or standards that are requir
	TopCoder Software Component Dependencies:
	Third Party Component, Library, or Product Dependencies:
	QA Environment:

	Design Constraints
	Required Documentation
	Design Documentation
	Help / User Documentation

