

Testing Framework 1.0 Requirements Specification

1. Scope

1.1 Overview
Cactus (http://jakarta.apache.org/cactus/) simplifies the process of testing web applications by
enabling the application to be built, deployed, tested, and shut down entirely within an Ant build
script. This component extends this concept to server-driven applications in general. It provides
analogous functionality for database servers, web servers (with a wrapper for Cactus tests), and
the extensibility to provide the same support for other types of servers.

1.2 Logic Requirements

1.2.1 JUnit Extension
The test framework must be a JUnit extension. (The JUnit project’s web page on writing JUnit
extensions can be found at http://junit.sourceforge.net/doc/faq/faq.htm#extend_1, but it pretty
much just refers the reader to the example extensions found in the src.jar archive in the JUnit
distribution.)

1.2.2 Ant Integration
Tasks must be added to Ant to enable tests defined in the test framework to be driven by an Ant
build script. These tasks must contain all of the configuration information necessary to perform
their functions. There must be no external configuration. (The Ant project’s web page on adding
tasks to Ant can be found at http://ant.apache.org/manual/develop.html.)

1.2.3 Server Initialization
The test framework must provide a mechanism for starting a server if necessary, and initializing it
with the proper data. For a SQL database server, this would mean starting the database server,
creating the necessary tables and possibly filling them with test data. For a Tomcat (JSP) server,
this would mean deploying the web application and starting the Tomcat server. It must be
possible to initialize several servers for one Ant server application testing task.

1.2.4 Running Test Suites
Once the all of the necessary servers have been properly initialized, the framework will run a
JUnit test suite.

1.2.5 Server Clean Up
The test framework must provide a mechanism for cleaning any test data off of a server (if
desired), and for shutting down the server (also if desired) after the testing has been completed.

1.2.6 Extensible Server Types
Initially, the testing framework must support testing for web and database applications. It must
also provide extensibility, allowing for new server types to be defined within the framework.

1.2.7 Consistency
The interfaces for testing different types of servers must be as similar to each other as possible in
order to keep the resulting tool consistent and easy to use.

1.2.8 Pluggable Testing Back-ends
Initially, the framework must support the testing of web applications using Cactus and database
applications using an analogous custom component (which is a separate component, but must
have its interfaces defined by this component). Use of these testing back-ends must be
pluggable, to allow for new types of databases and web servers to be used. These pluggable
back-ends must be appropriately wrapped, such that Cactus (or any other back-end) could
change its interface without necessitating a change in the testing framework. Any newly defined

Confidential ©TopCoder Software, Inc. 2002 Page 1

http://jakarta.apache.org/cactus/
http://ant.apache.org/manual/develop.html

server type must also support pluggable testing back-ends.

1.3 Required Algorithms
None

1.4 Example of the Software Usage
A web application uses a Tomcat JSP server and PostgreSQL database. The server application
test framework provides a simple way to specify how to configure and initialize both of these
servers. Testing the application is then simply a matter of calling the framework, which initializes
the servers, runs a test suite, and cleans up after itself.

1.5 Future Component Direction
Database testing will be added as a separate component. New server types (file server, ftp
server, etc) will be added, and existing test back ends will be replaced (Cactus may be upgraded
or replaced by some other Tomcat testing framework).

2. Interface Requirements

2.1.1 Graphical User Interface Requirements
None

2.1.2 External Interfaces
Must extend JUnit 3.8.1 and must use Cactus 1.7.1.

2.1.3 Environment Requirements
• Development language: Java 1.4
• Compile target: Java 1.4, Java 1.5
• Ant 1.6.5
• JUnit 3.8.1
• Cactus 1.7.1
• Tomcat 5.5

2.1.4 Package Structure
com.topcoder.testframework

3. Software Requirements

3.1 Administration Requirements

3.1.1 What elements of the application need to be configurable?
The servers need to be configurable and this must be done from an Ant build script. All of the
configuration information for an Ant testing task must be contained within that task.

3.2 Technical Constraints

3.2.1 Are there particular frameworks or standards that are required?
Ant 1.6.5

JUnit 3.8.1

Cactus 1.7.1

Confidential ©TopCoder Software, Inc. 2002 Page 2

3.2.2 TopCoder Software Component Dependencies:

None

**Please review the TopCoder Software component catalog for existing components that can be
used in the design.

3.2.3 Third Party Component, Library, or Product Dependencies:
Ant 1.6.5: http://ant.apache.org/

JUnit 3.8.1: http://www.junit.org/index.htm

Cactus 1.7.1: http://jakarta.apache.org/cactus/

Tomcat 5.5: http://tomcat.apache.org/

3.2.4 QA Environment:
• Solaris 7
• RedHat Linux 7.1
• Windows 2000
• Windows 2003
• Tomcat 5.5

3.3 Design Constraints
The component design and development solutions must adhere to the guidelines as outlined in
the TopCoder Software Component Guidelines.

3.4 Required Documentation

3.4.1 Design Documentation
• Use-Case Diagram
• Class Diagram
• Sequence Diagram
• Component Specification
• Example Ant build script

3.4.2 Help / User Documentation
• Design documents must clearly define intended component usage in the ‘Documentation’ tab

of Poseidon.

Confidential ©TopCoder Software, Inc. 2002 Page 3

http://www.topcodersoftware.com/pages/c_showroom.jsp
http://ant.apache.org/
http://www.junit.org/index.htm
http://jakarta.apache.org/cactus/
http://tomcat.apache.org/

	Testing Framework 1.0 Requirements Specification
	Scope
	Overview
	Logic Requirements
	JUnit Extension
	Ant Integration
	Server Initialization
	Running Test Suites
	Server Clean Up
	Extensible Server Types
	Consistency
	Pluggable Testing Back-ends

	Required Algorithms
	Example of the Software Usage
	Future Component Direction

	Interface Requirements
	Graphical User Interface Requirements
	External Interfaces
	Environment Requirements
	Package Structure

	Software Requirements
	Administration Requirements
	What elements of the application need to be configurable?

	Technical Constraints
	Are there particular frameworks or standards that are requir
	TopCoder Software Component Dependencies:
	Third Party Component, Library, or Product Dependencies:
	QA Environment:

	Design Constraints
	Required Documentation
	Design Documentation
	Help / User Documentation

